您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页Codeforces Round #363 (Div. 2) 698B Fix a Tree

Codeforces Round #363 (Div. 2) 698B Fix a Tree

来源:五一七教育网
D. Fix a Tree
time limit per test
2 seconds
memory limit per test
256 megabytes
 
 

A tree is an undirected connected graph without cycles.

Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).

Given a sequence p1, p2, ..., pn, one is able to restore a tree:

A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences(1,2,2), (2,3,1) and (2,1,3) are not valid.

You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).

Output

In the first line print the minimum number of elements to change, in order to get a valid sequence.

In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.

Examples
input
4
2 3 3 4
output
1
2 3 4 4
input
5
3 2 2 5 3
output
0
3 2 2 5 3
input
8
2 3 5 4 1 6 6 7
output
2
2 3 7 8 1 6 6 7
Note

In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4(because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.

In the second sample, the given sequence is already valid.

 

       当时打这场的时候并查集一直歪了(大哭状)所以挂掉了,隔天才补上去的,算是一道并查集的水题吧,多注意点细节就可以了。

思路:

      数组a【i】存放的是它所属的父亲,所以有3种情况:

① 当i==a【i】则说明i可以作为最终树的一个根,那么就先把这个根存起来,下次再遇到i==a【i】的情况,直接unite(i,root)并且sum++就可以了;

② 当i!=a【i】&&!same(i,a【i】)时,就直接unite(i,a【i】);

③ 当i!=a【i】&&same(i,a【i】)时,说明存在环,那么此时先判断根root是否有先找到了。如果没有就直接另root=i并且使a【i】=i,sum++;

    而如果根存在的话,就直接a【i】=root,unite(i,root)再sum++。

 

转载于:https://www.cnblogs.com/27sx/p/5687740.html

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务