theirRoleinLongBaselineOscillationExperiments
D.A.Harris4,G.Blazey10,A.Bodek13,D.Boehnlein4,S.Boyd12,W.K.Brooks11,A.Bruell11,H.Budd13,R.Burnstein6,D.Casper2,A.Chakravorty6,7,M.E.Christy5,J.Chvojka13,M.A.C.Cummings10,P.deBarbaro13,D.Drakoulakos1,J.Dunmore2,R.Ent11,H.Gallagher15,D.Gaskell11,R.Gilman14,C.Glashausser14,W.Hinton5,X.Jiang14,T.Kafka15,O.Kamaev6,C.E.Keppel5,11,M.Kostin4,S.Kulagin8,G.Kumbartzki14,S.Manly13,W.A.Mann15,K.McFarland13,W.Melnitchouk11,J.G.Morf´ın4,D.Naples12,J.K.Nelson16,G.Niculescu9,I.Niculescu9,W.Oliver15,V.Paolone12,E.Paschos3,A.Pla-Dalmau4,R.Ransome14,C.Regis2,P.Rubinov4,V.Rykalin10,W.Sakumoto13,P.Shanahan4,N.Solomey6,P.Spentzouris4,P.Stamoulis1,G.Tzanakos1,S.A.Wood11,F.X.Yumiceva16,B.Ziemer2,M.Zois1
1
UniversityofAthens;Athens,Greece
2
UniversityofCalifornia,Irvine;Irvine,California,USA
3
UniversityofDortmund,Dortmund,Germany
4
FermiNationalAcceleratorLaboratory;Batavia,Illinois,USA
5
HamptonUniversity;Hampton,Virginia,USA6
IllinoisInstituteofTechnology;Chicago,Illinois,USA7
SaintXavierUniversity;Chicago,Illinois,USA8
InstituteforNuclearResearch,Moscow,Russia9
JamesMadisonUniversity,Harrisonburg,Virginia,USA10
NorthernIllinoisUniversity;DeKalb,Illinois,USA
11
ThomasJeffersonNationalAcceleratorFacility;NewportNews,Virginia,USA
12
UniversityofPittsburgh;Pittsburgh,Pennsylvania,USA13
UniversityofRochester;Rochester,NewYork,USA
14
Rutgers,TheStateUniversityofNewJersey;Piscataway,NewJersey.USA
15
TuftsUniversity;Boston,Massachusetts,USA
16
WilliamandMaryCollege,Williamsburg,Virginia,USA
ABSTRACT
Thefieldofoscillationphysicsisabouttomakeanenormousleapforwardinstatisticalprecision:firstthroughtheMINOSexperimentinthecomingyear,andlaterthroughtheNOνAandT2Kexperiments.Becauseoftherelativelypoorunderstandingofneutrinointeractionsintheenergyrangesoftheseexperi-ments,therearesystematicsthatcanariseininterpretingfardetectordatathatcanbeaslargeasorevenlargerthantheexpectedstatisticaluncertainties.Wedescribehowthesesystematicerrorsarise,andhowspecificmeasurementsinadedicatedneutrinoscatteringexperimentlikeMINERνAcanreducethecrosssectionsystematicerrorstowellbelowthestatisticalerrors.
arXiv:hep-ex/0410005v1 2 Oct 20041.Introduction
Overthepast5yearsthefieldofneutrinooscillationshasmovedfromseeingdecade-oldanomaliesincosmicray1)andsolar2)neutrinodatatocrosschecksoftheseanomalies(SNOdata3)andangulardistributionsinatmosphericneutrino
data4))andmostrecentlytoterrestrialconfirmationsoftheoscillationhypothesis(Kamland5)andK2K6)).Thenextstepsinthisfieldareto1)movetotheprecisionrealmofmeasurementsofthemasssplittingsandthemixinganglesthathavebeenobserved,and2)toseeifanymoreoff-diagonalelementsintheneutrinomixingmatrixarenon-zero.
Newextremelyintensebeamlinesarebeingbuiltorplannedthatwillgreatlyin-creasethestatisticalreachandultimateprecisiononoscillationparameters.However,withsuchlargeimprovementsinthestatisticalaccuracycomenewconcernsaboutsystematicuncertaintiesthathaveuntilnowbeennegligible.Inparticular,uncertain-tiesinneutrinocrosssectionsandnucleareffectscanproducesystematicuncertaintiesintheextractionofmixingparameters.Althoughneardetectorsareacriticalpartofprecisionlong-baselineoscillationmeasurements,theyarenotoftenwell-suitedtomakealltheneededcrosssectionmeasurements,duetothefactthattheytendtobeverysimilartothemassivefardetectors.Furthermore,aneardetectorcanatbestbeaconstraintontheproductofthenearflux,crosssectionanddetectionef-ficiency.Uncertaintiesonallofthesequantitiesmustbeincorporatedinultimateneardetectoranalyses.Thestudiesdescribedinthisdocumentdonotaddresstheseotheruncertainties,butwhentakenintoaccountclearlyworsenthepredictionfromtheneardetectordatabeyondwhatisdescribedhere.
Thisarticleisdividedintotwosections.Thefirstsectionaddressesthekindsofuncertaintiesthataremostrelevantforνµdisappearanceexperiments,whoseaimistopreciselymeasurethemasssplitting∆m223,andthemixinganglewhichhasalreadybeendeterminedtobelarge,θ23.Inordertoachievethesegoalstheexperimentsmustmeasureoscillationprobabilitiesasafunctionofneutrinoenergy.Twoimpor-tantconcernshereareuncertaintiesinchargedcurrentnon-quasi-elasticprocesses,andthescaleofnucleareffects.Bothnon-quasi-elasticchannelsandthenuclearenvi-ronmentaltertherelationshipbetweenthemeasuredandtrueneutrinoenergy.Thesecondsectionaddressesexperimentssearchingforνeappearance,whichifseenwouldindicateanon-zerovalueofθ13.Becausethesizeofthesignalisunknown,thefinaleventsamplemaybedominatedbybothsignal(chargedcurrent)crosssections,orbybackground(neutralandchargedcurrent)processes.Eitherway,theexperimentsofthepastarenotpreciseenoughtoprovideaccuratepredictionsforthefardetectoreventsamples.
Afterdiscussingthewaysneutrinointeractionuncertaintiesapplytoeachofthesemeasurements,adescriptionisgivenofthekindofneutrinoscatteringmeasurementsthatareneeded.AsanexamplewegivetheexpectedprecisionoftheMINERνAexperiment,whichhasbeenproposedtorunparasiticallyintheNuMIbeamline8).2.νµDisappearance
Inordertopreciselymeasurethemasssplittingbetweentwoeigenstatesonemustmeasuretheoscillationprobabilityasafunctionofneutrinoenergy(Eν)dividedbybaseline(L).Themuonneutrinodisappearanceprobability(inthestandard3-generationoscillationparameterization7))isexpressedas
P(νµ→νµ)=1−cosθ13sin2θ23sin
422
2
1.27∆m223(eV)L(km)
ized,butatthetimeofthiswritingawaterCerenkovneardetectorisnotforseenaspartofthefirstphaseoftheexperiment.2.1.KinematicRecontructionofNeutrinoEnergy
Inkinematicreconstructiononeassumesthattheeventisofaparticularprocess(forexample,quasi-elastic)andonecalculatestheenergyassumingthekinematicsofthatreaction.ThisisthetechniquethatisusedpredominantlyinwaterCerenkovdetectors,whichoperatebestinregimeswherethequasi-elasticprocessdominatesthecrosssection.IntheSuper-Kamiokandedetector,forexample,theνµchargedcurrentsignalsampleconsistsofsingleringmuon-likeevents,whicharethenassumedtobequasi-elasticevents.Theenergyoftheincomingneutrinocaninthatcasebecalculatedusingonlytheoutgoingmuonmomentum(pµ)anddirection(θµ),asfollows:
Eν=
mNEµ−m2µ/2
Figure1:TheneutrinoenergydistributionforeventsatT2K,brokenupintovariousprocesses:quasi-elastic,singlepion(Resonance),multi-pion(DIS),andneutralcurrents,for(left)nooscillationsand(right)oscillations
Asisshowninfigure2,thequasi-elasticcrosssectionsthemselvesareknowntoatbestthe10%level,andworseatenergiesofafewGeV17).Currentmeasurementsofthechargedcurrentsinglepionandmultipioncrosssectionscomefromexperimentsdoneinthe80’s18,19),andareknowntoatbestthe20%level20).However,someofthesemeasurementshavecentralvalueswhichdifferbymuchmorethanthetotalerrorbars,andthecrosssectionsweremeasuredonavarietyofneutrinotargets.TheK2Kexperimenthasafine-grainedneardetectorwhichcantrytomeasurethenon-quasi-elastictoquasi-elasticratio.Inreference6)thisratiowasassignedanerrorof20%basedonconsideringdifferentcrosssectionmodelswhichwereallinagreementwiththeirneardetectordata.Onecanseethatthestatisticalerrorforthefinaleventsamplewillbewellabove100eventsintotal,sofutureconstraintsofthisratiowillbeextremelyimportant.
Whatwouldbestreducethisuncertaintyforfutureexperimentsareprecisemea-surementsofboththedifferentialsingle-pionandmultipionchargedcurrentcrosssections,asafunctionofneutrinoenergy.Clearlybecausetheeventsamplesaresodifferentbetweennearandfardetectors,andbecausethewaterCerenkovtechnologyisnotenoughtoconstrainthisratio,additionalmeasurementswithfine-graineddetec-torsarerequired.Ideally,therewouldbemeasurementsofexclusivenon-quasi-elasticfinalstatesidentifiedwithawell-modeledefficiencyrelativetothatofquasi-elasticevents.Becausethereconstructedenergyfortheseeventsislowerthanthetrueneu-trinoenergy,itisimportanttomeasurethechargedcurrentsingleandmulti-pion(resonance)crosssectionsbothatandabovetheT2Kneutrinoenergy.
Byidentifyingboththeoutgoingmuonandprotoninaquasi-elasticevent,andbyrequiringtheretobenootheroutgoingtrack,afine-graineddetectorsuchastheoneproposedbyMINERνAcancleanlyseparatequasielasticeventsinabroadenergyrange,andtheexpectedpurityisabove70%8).In4yearsofparasiticNuMIrunning
ν + n → p + µ, BBA-2003 Form Factors, mA=1.00cm2 )1.41.210.80.60.40.20ν FNAL 83, D2ν ANL 77, D2ν BNL 81, D2ν ANL 73, D2ν SKAT 90, CF3Brν GGM 79, C3H8Fermi Gas,C12,EB=25 MeVν Minerva, C12ν Serpukov 85, Alν GGM 77, CF3Br-38-σ( 10110Eν (GeV)Figure2:CurrentandexpectedMINERνAstatisticalsensitivityforquasi-elasticcrosssection(left)andformfactor(right)measurements,fora4yearparasiticMINOSrun.Left:theopenredtrianglesareinmanyenergybinslargerthanthestatisticalerrorexpectedinMINERνAtakingintoaccountdetectoracceptanceandresolution.
MINERνAhopestocollectabout105Quasielasticeventsperton,andtheexpectedstatisticalerroronthecrosssectionprecisionasafunctionofenergy(aftertakingintoaccountdetectoracceptance,backgrounds,andresolution)isshowninfigure2(left).Figure2(right)showshowMINERνAwouldalsohaveadequatestatisticsandresolutiontodiscriminatebetweentwodifferentmodelsfortheQ2dependenceofthequasi-elasticformfactor,whichagainwillhaverelevanceforthequasi-elastictonon-quasielasticratio.Thesystematicerrorintheenergydependencewouldmostlikelybedominatedbythefluxuncertainty,comingfromtheMIPPdataonhadronproduction21),butisexpectedtobeatthe5%levelatlowenergies.2.3.CalorimetricEnergyReconstruction
Atneutrinoenergieshigherthan1GeV,calorimetricenergyreconstructionisamuchmoreusefultechniquethankinematicreconstruction.Inacalorimetricdevicethereconstructedorvisibleneutrinoenergyissimplythesumofallthesecondaryparticles’energiesthatarevisibleintheevent.Foraνµchargedcurrentevent,themuonenergycanbedeterminedbyfirstmeasuringitsmomentumusingeitherrangeorcurvature(ifthecalorimeterismagnetized),andthentheremainingsignalintheeventissummedtobethehadronenergy.BecausemostcalorimetershaveamuchlowerpionthresholdthanCerenkovdetectors,muchmoreofthetotalkineticenergyisvisibleformulti-pionevents,whichdominatethecrosssectionaboveafewGeV.Asaresult,theneutrinoenergyreconstructionisnotasbiasedfornon-quasi-elasticeventsasitisforwaterCerenkovdetectors.
FortheMINOSdetector,theabsoluteenergyscaleofthemuonsissetbyknowingthethicknessofthesteelplatesandbyunderstandingtheprocessofmuonenergyloss.Thethicknessofeachoftheplateshasbeenmeasuredtobetterthan0.1%andtheyvarywithanRMSof0.4%22).AmuontestbeamwasusedatCERNwherea2%absolutescalecalibrationwasachieved23).ThehadronicandelectromagneticenergyscaleshavebeencalibratedusingtestbeamsonaprototypedetectoratCERN,andhavebeenmeasuredrelativetothemuonscaletobetterthan5%24,25).However,onemusttranslatefromtheresponsefrompionsandmuonstothatofinteracted
neutrinos.
AtneutrinoenergiesofafewGeVandbelow,therearethreeeffectsthatbecomesignificantinthetranslationbetweenbetweenvisibleenergyandneutrinoenergy.Uncertaintiesintheseeffectsmustbeunderstoodandincludedinanyprecisemea-surementof∆m223.Oneeffect,whichisindependentofthetargetnucleus,isthefactthatoftherestmassesthesecondarychargedpionsbecomeimportant.SinceMINOScannotmeasurethemultiplicityoffinalstateparticles,amultiplicitydistributionasafunctionofhadronenergymustbeassumed.Thesecondandthirdeffectsareduetothefactthatsecondaryparticlescaneitherscatterinthenucleusorbecompletelyabsorbed.Allthreeoftheseeffectsresultinareductioninthevisiblehadronenergyinanevent,whichthereforeresultsinalowerreconstructedneutrinoenergy.Asisdescribedinreference26),thesizeoftheseeffectscanbequitelargeastheparentneutrinoenergydecreases,sincethereisapeakinthepionabsorptioncrosssectionforpionsatseveralhundredMeV27).
Inordertoevaluatetheextenttowhichnucleareffectswillaltera∆m223mea-surementinaMINOS-likedetector,acrudedetectorsimulationcombinedwiththeNEUGENeventgenerator28)andNuMIfluxesat735km29)wasused.Inthissimulationthevisibleenergyisdefinedsimplyasthesumofthekineticenergiesofallthechargedfinalstateparticles,plusthetotalenergyfortheneutralpions,andpho-tons,sinceitisassumedtheydepositalltheirenergyintheformofelectromagneticshowers.
Figure3showsthechangesintheratioofvisibletototalneutrinoenergyforchangesinabsorptionandscatteringseparately.Fortheplotontheleftthetargetisassumedtobesteel,andtheparameterintheeventgeneratorthatdescribespionabsorptionissettozeroordoubled.Fortheplotontherightallpionabsorptionisturnedoff,andthedifferencesthatremainareduetotherescatteringeffectsbetweensteel,carbon,andlead.Becausetheνµdisappearanceprobabilityisexpectedtobelarge,thefarandneardetectorenergyspectrawillbeverydifferent,andthereforetheseeffectswillonlypartiallycancelbetweenthenearandfardetector.Theextenttowhichtheydonotcancelresultsinasystematicerroron∆m223.
Ifwetakethetwodifferencesdescribedaboveastheuncertaintiesinpionab-sorptionandrescattering,wecandeterminehowthiswouldcomparetotheMINOSstatisticalerror.Inamorecompleteanalysis,thedetectoracceptancemustalsobetakenintoaccount.Themostimportantcutthatwillreducethesizeofnuclearef-fectscomesfromrequiringthemuontotakeupaminimumenergyintheevent.Thesmallertheneutrinoenergythatcomesfromthehadroncontribution,thesmallerthechangeswhichthenucleareffectuncertaintieswillbringtothetotalneutrinoen-ergymeasurement.However,byrequiringthemuontotakeupmostoftheneutrinoenergy,onewillbelosingpreciousfardetectorstatistics.Intheevaluationofthesystematicerrorsshownhere,aminimummuonenergycutof0.5GeVwasmadetotrytotakeintoaccounttheacceptanceinarealanalysis.Iftheuncertaintiesonnu-cleareffectsareassignedtobethedifferencesshowninfigure3,thenwitha0.5GeVmuonmomentumcuttheyinduceanerrorin∆m223thatisonlyslightlysmallerthanthestatisticalerrorexpectedbyMINOSfor7.6×1020protonsontarget(POT),asshowninfigure4.
Figure3:Ratioofvisible(reconstructed)totrueneutrinoenergyforseveraldifferentmodelsofnucleareffects.Theleftplotshowstheratioforsteel(solid)withthenominalpionabsorption,aswellasthesameratioforthepionabsorptionturnedoffordoubledabovewhatisexpected.Therightplotshowsthedifferencestheratioforthreedifferenttargetnuclei,wherethepionabsorptioneffectsareturnedofftoisolatetheeffectsofpionrescattering.
Figure4:Fractionalsizeofthe90%confidencelevelregionatsin22θ23=1fromstatisticsfortheMINOSexperiment.Alsoshownarepossiblesystematicuncertaintiesduetouncertaintiesinnucleareffects:thedot-dashedlinearethoseeffectsdescribedinthetext,andthedottedlineassumesuncertaintiesafterdedicatednucleareffectmeasurementswherepionrescatteringandabsorptionaremeasuredonthetargetnucleus(steel).Detectoracceptanceismodelledbyrequiringmuonstobeabove0.5GeV.Alsoshownarethestatisticalerrorsfortwodifferentintegratedprotonintensities.
2.4.CurrentandFutureMeasurementsofNuclearEffectsinNeutrinoScatteringEvaluatingtheappropriateuncertaintyinthesizeofnucleareffectsinneutrinoscatteringisnottrivial,becausetheonlydataontheseeffectsinheavynucleicomefromchargedleptonscattering30),andonehastousetheoreticalmodelstotranslatetheeffectsfromthechargedleptonstotheneutralleptons.TheonlyneutrinodatameasuringnucleareffectswithneutrinoscomesfrompionrescatteringmeasurementsonNeandD231).
Inordertomakeaprecisemeasurementofnucleareffectsinneutrinoscatter-ingoneshouldmeasureinteractionsonseveraldifferenttargetnucleisimultaneously,whereoneofthenucleiisthesameasthefardetector,andtheothertargetsspanabroadrangeofatomicnumber.Adetectorwhichcanpreciselyidentifythetargetnucleusevent-by-eventiscritical.Inthiswaythenucleareffectsandtheirenergydependencecanbemeasuredatleastinchargedcurrentinteractions,andgivenadetectorwithgoodenoughxandQ2resolution,thesekinematicdependencescanalsobemeasured.
TheMINERνAexperimenthasproposedafine-graineddetectorwhichwouldmeasureneutrinointeractionsonsteel,carbon,andlead.ByrunningparasiticallyintheNuMIbeamlineforfouryears,theexperimentwouldbeabletocollectabout940keventson8ironandlead,and2.8Meventsoncarbonwithinthefiducialvolumeofthescintillator).Thisenormousimprovementinbothstatisticsandrangeoftargetnucleiwouldchangeourlevelofunderstandingofnucleareffectsinafundamentalway,andgiverealconstraintsonneutrinointeractionmodels.Theuncertaintiesin∆m2error,23effectswiththisnewdatainhandwouldbesmallcomparedtothestatisticalevenforhigherlevelsofintegratedprotonsontarget,asisshowninfigure4.3.νeAppearance
Thegoalofthenextgenerationofneutrinooscillationexperimentsistodeterminewhetherornotthelastunmeasuredneutrinomixingmatrixelement,(called|Ue3|orsinθ13)isnon-zero.Ifθ13isinfactnon-zerothenthereisachancethatfutureexperimentscansearchforCPviolationintheleptonsector.Ifitisnon-zerothenthepossibilityofmeasuringtheneutrinomasshierarchyalsoarises.ForT2KandNOνAprobingthismatrixelementisdonebymeasuringtheνµ→νeoscillationprobabilityata“frequency”correspondingto∆m223.Theoscillationprobabilityforνµ→νeinvacuumcanbeexpressedas7)
P(νµ→νe)=sin2
θ23sin2
2θ13sin
2
1.27∆m223(eV2
)L(km)
probabilitymustbelessthanabout5%atthe90%confidencelevel.Also,thereisanintrinsicνecomponentthatcanbeaslargeasafewpercent.Finally,neutralcurrentorhigh-ychargedcurrentνµinteractionscanproduceenergeticneutralpions,whichcaninturnproduceelectromagneticshowersthatfakeaνechargedcurrentevent.TheT2KandNOνAexperimentswillreducethesebackgroundssignificantlybe-lowthatofthecurrentgenerationoflongbaselineexperimentsbyusingdetectorsoptimizedforelectronappearance,andbyplacingthosedetectorsoffthebeamlineaxis.Becauseofthetwobodydecayofthechargedpion,theenergyspectraatsmallangleswithrespecttothebeamlineaxiscanbemorepeakedthanthespectrumonthebeamlineaxis.Also,atthesesmallanglesthepeakenergyitselfisreduced.Thenarrowestneutrinoenergyspectrumoccurswhenthefardetectorisplacedatananglecorrespondingto90◦inthepioncenterofmass.Inthisconfiguration,theνefluxcomesfromthethree-bodydecaysofthemuon,sotheintrinsicνefluxatlowerenergiesdoesnotincreaseathigheranglesliketheνµfluxdoes.Also,theneutralcurrentbackgroundisalwaysasteeplyfallingfunctionofvisibleenergybecausetheoutgoingneutrinoalwaystakessomefractionoftheincomingneutrino’senergy.Withthis“off-axis”strategy,theNOνAandT2Kexperimentsstillexpecttheretobesomebackgroundeventsafteralltheanalysiscutsaremade,evenintheabsenceofνµ→νeoscillations.Themeasurementoftheνµ→νeprobabilityrequiresknowingtheleveloftheremainingbackground,andthecrosssectionanddetectionefficienciesforνeinteractions.
3.1.Quantifyingtheeffectsduetocrosssectionuncertainties
Inordertounderstandwhyprecisecrosssectionmeasurementsareneededforaνeappearanceexperiment,itishelpfultorevisithowexperimentswillmeasuretheνµ→νeoscillationprobability.Thenumberofeventsinthefardetectorcanbedescribedas
Nfar=ΦµP(νµ→νe)σeǫeMfar+Bfar
(4)
whereΦµisthemuonneutrinofluxatthefardetector,Pistheoscillationprobability,σeandǫearetheelectronneutrinocrosssectionandefficiency,respectively,andMfaristhefardetectormass.Thebackgroundatthefardetector,Bfar,canbeexpressedas
Bfar=Σi=e,µΦiP(νi→νi)σiǫiMfar
(5)
Thenotationisthesameasequation4,butǫiistheefficiencyforaneutrinooftypeitobemisreconstructedasanelectronneutrino.Backgroundscomefrombothmuonandelectronneutrinos,andfromseveraldifferentneutrinointeractionchannels.Bothequation4and5mustbesummedoverthosechannels(quasi-elastic,resonance,etc.),aswellasintegratedoverneutrinoenergy.
Theerrorontheoscillationprobability,inthissimplifiednotation,isexpressedas
δP
(ΦµσeǫeMfar)2
(δBfar)2
+
ΦµσeǫeMfar
(
dΦµ
σe
)2+(
δǫe
abouthowtheeventsamplesarelikelytochangebetweennearandfar.Ataneardetector,thefluxofmuonneutrinoswillhaveaverystrongpeakataparticularenergy,whileatthefardetectorthatpeakwillhaveoscillatedmostlytoντ’s.Attheseenergies,ντ’swillnotproducechargedcurrentevents,onlyneutralcurrentevents.Theneutralcurrenteventsamplesarelikelytobesimilarfromneartofar,providedtheneardetectorisatasimilaroff-axisangle.Theelectronneutrinoeventsatthepeakareprimarilyfrommuondecaysinthebeamline,whichoccuronaveragesubstantiallyfartherdownstreamthanthepiondecays.Therefore,theextrapolationfromtheneartofardetectortendstobedifferentforallthreeeventsamples.Ifonecannotpredictfortheneareventsamplehowmanybackgroundeventsbelongtoeachcategory(duetoanyoftheaboveuncertainties),thefardetectorextrapolationcanbewrong.
Asaquantitativeexampleofhowcrosssectionuncertaintieswouldnotcompletelycancelbetweennearandfardetectors,astudywasdoneusingasimulationforanearlydesign32)oftheNOνAdetector.AlthoughthefinaldesignoftheNOνAdetectorwillbedifferent,thefundamentalargumentswillstillbetrue:therewillbeamixofcontributingcrosssectionsatthefardetectorthatbydefinitioncannotbethesamemixasthatattheneardetector.
Thesignalandbackgroundstatisticsforthenominal5yearrunaregivenintable1.Alsogivenintable1arethefractionsthateachneutrinointeractionprocesscontributestotheeventsofthattypethatpassallcuts,aswellasthecrosssectionuncertaintyonthatprocess,astabulatedinreference20).Withoutaneardetector,thetotalerroronthebackgroundpredictionfromcrosssectionuncertainties,forthecasethattherearenoνµoscillations,is16%,whichisequivalenttothestatisticalerrorforthatcase.Forthecaseofmixingatthelevelindicatedinthetable,thestatisticalerrorontheprobabilitywouldbe8%,whiletheerrorsfromcrosssectionuncertaintiesalonewouldbe31%.
QE20%
Statistics
175(sin22θ13=0.1)
15.43.619.1
COH100%
infardetector35%10%50%30%65%35%40%10%
Table1:ListofthesignalandbackgroundprocessesthancancontributeeventsintheNOνAfar
detector,fora50ktondetectorlocated12kmfromtheNuMIaxis,820kmfromFermilab,assuming
−3
a∆m2eV2.Alsogivenarethecurrentcrosssectionuncertaintiesonthoseprocesses.23of2.5×10
“n/I”indicatesthatthechargedcurrentcoherentprocesswasnotincluded,sinceitisexpectedtobesmallcomparedtootherchargedcurrentprocesses.
Figure5showsthefractionalerroronthefardetectorpredictionasafunctionoftheanglebetweenthebeamlineandtheneardetector,fortwodifferentextremes:
Figure5:Thefractionalerrorintheeventratesatthefardetectorfromuncertaintiesineachprocess(Quasi-elastic,resonance,deepinelasticscattering,andneutralcurrentcoherentπ0production),addedinquadratureforeachsource(neutralcurrent,νµchargedcurrent,beamνe),plottedasafunctionoftheanglebetweentheneardetectorandthebeamlineaxis,for(left)background-dominatedexperimentand(right)signal-dominatedexperiment.
theleftplotshowsthecasewheretheνµ→νeprobabilityiszero(correspondingtothebackground-limitedexperiment),andtherightplotshowsthecasewheretheprobabilityisatabout5%(orsin22θ13=0.1,correspondingtothesignal-dominatedexperiment).Forlowanglestheerrorduetothehighyνµchargedcurrentuncertain-tiesissmallest.Forhighanglestheerrorsduetoneutralcurrentuncertaintiesandlowyνechargedcurrentuncertaintiesarethesmallest.
Theerrorsforeachofthethreebackgroundcontributionsareshown,wheretheerrorsduetoquasi-elastic,resonance,DIS,andcoherentcrosssectionuncertaintiesareaddedinquadrature.Inthecaseofthebackground-dominatedexperiment,thecrosssectionerrorsalonearecomparablenolessthanhalftheexpectedstatisticalerrorofabout15%.Forthesignal-dominatedexperiment,thecrosssectionatbestafactoroftwoworsethantheexpectedstatisticalerrorof7%.3.3.FutureMeasurementsofLowEnergyCrossSections
Giventhelowstatistics,discrepantdata,andlimitedreachintargetnucleiforchargedandneutralcurrentcrosssectionmeasurements,thereisclearlymuchworktobedone.Sectiondescribedthecrosssectionuncertaintiesforquasi-elasticandresonancechargedcurrentprocesses,anddescribedhowMINERνAcouldprovideanaccuratequasi-elasticcrosssectionmeasurement.Forνeappearancemeasurementsthechargedcurrentcrosssectionsareimportantincaseofalargesignal.Regardlessofsignalsize,however,theneutralcurrentcrosssectionsareimportantsincetheyareverypoorlyknownnow.Insomecasesthebeststrategywillbetomeasurethechargedcurrentanalogasafunctionofneutrinoenergy,anddependontheorycombinedwithanaverageneutralcurrentmeasurementtopredicttheneutralcurrentcrosssectionasafunctionofneutrinoenergy.Recentneutralcurrentmeasurementshavebeennormalizedtodifferentchargedcurrentchannels:forexample,theratioofsingleπ0productioninneutralcurrentstothetotalνµchargedcurrentcrosssection
Figure6:Thefractionalerrorinthetotaleventrateatthefardetectorfrompost-MINERνAuncertaintiesineachprocessasafunctionoftheanglebetweentheneardetectorandthebeamlineaxis,forthecasewheretheνµ→νeprobabilityis0(left)or5%(right).
hasbeenmeasuredtoabout11%bytheK2Kcollaboration33).
Withanappropriatedesignthatwouldincludebothfine-grainedfullyactivetar-getsurroundedbyelectromagneticandhadroniccalorimetry,theuncertaintiesonthesecrosssectionscouldbeimprovedbyfactorsof5ormore.Asanexample,theMINERνAexperimentproposestoreducetherelevantcrosssectionuncertaintiesforNOνAtoabout5%forallofthechargedcurrentandneutralcurrentDISprocesses,10%fortheneutralcurrentresonanceprocesses,and20%fortheneutralcurrentcoherentπ0processes8).Butbeforedescribinghowthesemeasurementswouldbemade,itisstrikingtoseehowmuchthesemeasurementswouldreducethesystematicerrorsshowninfigure5.
Iftheuncertaintiesdescribedabovewereachieved,thenthesystematicerrorsduetocrosssectionuncertaintieswouldbewellbelowthestatisticalerrors,asshowninfigure6.Forthebackground-dominatedexperiment(left),thesystematicerrorwouldbeaboutafactoroftenlessthanthestatisticalerror,andforthesignal-dominatedexperiment(right)thesystematicerrorwouldbeafactorofthreebelowthestatisticalerror.
Theremainderofthisarticledescribesstrategiesforisolatingtheresonantandco-herentcrosssectionsintheMINERνAdetector,andtheexpectedstatisticalprecisioninafouryearrun.
3.3.1.ResonanceCrossSections
Resonanceproductioninneutrinoscatteringisextremelyimportantforfuturelongbaselineneutrinooscillationexperiments,butitscrosssectionisonlyknownataboutthe40%levelforthechargedcurrentprocess34)at2GeV,andmuchworsefortheneutralcurrentprocess35).
Resonanceproductioncanbestudiedindetailwithafine-grainedexperimentwithgoodvertexingabilitiesandalowthresholdforseeingpions.Byrequiringanoutgoingmuon,pion,andproton,MINERνAexpectstofullyreconstructalargefractionofthe2×105chargedcurrentresonanceeventsthatwilloccurinthedetector,which
wouldenablenotonlyaprecisecrosssectionmeasurementasafunctionofenergy,butalsoenoughstatisticstomeasuretheW2distributions.Withgoodneutralandchargedpionidentificationtheindividualstatescontainingbothchargedandneutralpionscanbeclearlyseen,whichinturnareimportantforνµdisappearanceandνeappearance,respectively.
Bymeasuringchargedandneutralcurrentresonanceproductionandcombiningthiswiththeenergyinformationfromthechargedcurrentresonanceproduction,modelsthatrelatechargedtoneutralcurrentswillbetested,andprecisepredictionsfortheneutralcurrentprocesseswillbecomeavailable.3.3.2.CoherentCrosssections
Theprocessbywhichaneutrinointeractswithanucleuscoherentlyandproducesonlyaneutralpion(intheneutralcurrentprocess)oramuonandachargedpion(inthechargedcurrentprocess)isperhapstheprocessthemostpoorlymeasuredyetstillseen.Ahandfulofmeasurementsexistatthefewsigmalevelinboththeneutral(37))andcharged(38))currentchannels,asshowninfigure7(left).Althoughthecrosssectionforthisprocessislow,itshighuncertaintyandthehighprobabilitythatcoherenteventspassνeanalysiscutsmeansthatthischannelwillcontributeasignificantuncertaintyintheneutralcurrentbackground.Furthermore,becauseitisaninteractionthatdoesnotbreakupthenucleus,thenucleareffectsonthecrosssectionareimportant.
Coherentchargedcurrenteventscanbeidentifiedbylookingattheenergylossofthetwotracksandrequiringittobeconsistentwiththepresenceofamuonandapion,andnothingelse.Thebackgroundwouldcomefromincoherentprocesseswhereotherparticles(forexampleaproton)werelost.Coherentneutralcurrenteventswouldbeidentifiedbylookingfortwoelectromagneticshowerswhichreconstructtothepioninvariantmass.Backgroundsherewouldcomeagainfromincoherentprocesses,andareexpectedtobelargerbecauseseveralprocessesproduceatleastoneneutralpion.Theneutralcurrentcoherentsamplecanbeseparatedstatisticallybylookingatthedistributionofthereconstructedangleoftheneutralpionwithrespecttotheneutrinodirectionandsubtractingthebackgroundundertheforwardscatteringpeak.
TheMINERνAexperimentrunningintheNuMIbeamlinewouldcollectoverathousandchargedandneutralcurrentcoherenteventsina3-tonfiducialvolumeperyear,resultinginaprecisemeasurementasafunctionofneutrinoenergyforthechargedcurrentprocess.Figure7showsboththeenergy(left)andatomicnumber(right)dependencethatcouldbemeasuredbyMINERνAinthechargedcurrentchannelalongwiththecurrentsetofmeasurements.Byusingtheoryandthehighstatisticsneutralcurrentdataonecouldobtainatleastafactoroffiveimprovementintheprecisionontheneutralcurrentcoherentbackgroundprediction.4.Conclusions
Itisclearfromeventhesepreliminarystudiesthatdedicatedneutrinoscattering
CC Coherent Pion Production Cross Section
σ (10-40 CM2)/12C NUCLEUS500
A-Dependence of 5 GeV CC Coherent Cross-Section2.252
400
1.75σ(10-38 cm2/nucleus)1.5300
1.251
200
0.750.5100
0.25002.557.51012.51517.52000255075100125150175200Eν (GEV)
A of Target Nucleus
Figure7:ExpectedMINERνAstatisticalsensitivityforthechargedcurrentcoherentcrosssectionenergy(left)andA(right)dependencemeasurements,fora4yearparasiticMINOSrun,takingintoaccountdetectoracceptance.
experimentssuchasMINERνAwillplayaveryimportantroleinhelpingthecurrentandfutureprecisionoscillationexperimentsreachtheirultimatesensitivity.Inordertogetthemostprecisevaluesof∆m223(whicheventuallyisusedtoextractmixinganglesandtheCP-violatingphase)thisfieldmustbetterunderstandandquantifytheprocessesthatoccurbetweentheinteractionofanincomingneutrinoandthemeasurementoftheoutgoingparticlesinthedetectors.AlthoughtheissuesaredifferentdependingonwhetherthosedetectorsarewaterCerenkovorcalorimetricdevices,inbothcasesmoreinformationisneeded.Extractingthemixingparameterssuchasθ13andultimatelytheneutrinomasshierarchyandCPviolationrequiresmuchbetterunderstandingofresonantcrosssections.Evensettinglimitsontheseparameterswillrequirebettermeasurementsofneutralcurrentprocesses.Precisemeasurementsofnucleareffectsandexclusivecrosssectionswilllayanimportantfoundationforafieldthatisinthemiddleofmakingorderofmagnitudeleapsinbothstatisticsandsensivitity.5.References
1)KamiokandeCollaboration,S.Hatakeyamaetal.,Phys.Rev.Lett.81(1998)2016;Soudan-2Collaboration,W.W.Allisonetal,Phys.Lett.B449(1999)137;MACROCollaboration,Ambrosioetal,Phys.Lett.B434,451(1998)2)Y.Fukudaetal.,Phys.Rev.Lett.81(1998)1158;Erratum81(1998)4279,B.T.Clevelandetal.,Astrophys.J.496(1998)505.W.Hampeletal.(GALLEXCollaboration),Phys.Lett.B447(1999)127.,J.N.Abdurashitovetal.(SAGECollaboration),Phys.Rev.C60(1999)055801[astro-ph/9907113]3)Q.R.Ahmadetal.Phys.Rev.Lett.(2002)011302nucl-ex/0204009
4)Y.Fukudaetal.,Phys.Rev.Lett.81(1998)1562[hep-ex/9807003];M.Sanchezetal.,Phys.Rev.D68,113004(2003)
5)KamLANDCollaboration(K.Eguchietal.),Phys.Rev.Lett.90(2003)021802[hep-ex/0212021]
6)K2KCollaboration(M.H.Ahnetal.),Phys.Rev.Lett.90(2003)41801[hep-ex/0212007]
7)B.PontecorvoandJ.Exptl,Theoret.Phys.34247(1958);Z.Maki,M.NakagawaandS.Sakata,Prog.Theor.Phys.28,870(1962).
8)“ProposaltoPerformaHigh-StatisticsNeutrinoScatteringExperimentus-ingaFine-GrainedDetectorintheNuMIBeamline”,D.Drakoulakosetal,FERMILAB-PROPOSAL-0938,Feb2004.[hep-ex/0405002]9)M.Maltonietal,submittedtoNewJ.Phys,[hep-ph/0405172]
10)ByCHOOZCollaboration(M.Apollonioetal.),Phys.Lett.B466(1999)415
[hep-ex/9907037]
11)W.GrimusandL.Lavoura,Phys.Lett.B572,1(2003);A.Aranda,
C.D.Carone,R.F.Lebed,Phys.Rev.D62,016009(2000).
12)“ALongBaselineNeutrinoOscillationExperimentatFermilab”,E.Ableset
al,FERMILAB-PROPOSAL-0875,Feb.1995,241pp.
13)“NOVA:ProposaltobuildanOff-AxisDetectortoStudyνµ→νeoscillations
intheNuMIBeamline”,I.Ambatsetal.,FERMILAB-PROPOSAL-0929,Mar2004.
14)Y.Itowetal,“TheJHF-KamiokaNeutrinoProject”,KEKreport2001-4,
June2001.[hep-ex/0106019]
15)M.Nakahataetal,Nucl.Instrum.Meth.A421,113(1999);E.Blaufusset
al,Nucl.Instrum.Meth.A458638(2001).
16)D.Casper,Nucl.Phys.Proc.Suppl.112,161(2002),[hep-ph/0208030]
17)S.V.Belikov,ZPhysA320,625(1985),N.J.Bakeretal,Phys.Rev.D23,
2499,(1981),S.J.Barishetal,Phys.Rev.D16,3103,(1977),T.Kitagakietal,Phys.Rev.D28,436(1983),J.Brunneretal,Z.Phys.C45,551(1990),D.Allasiaetal,Nucl.Phys.B343,285(1990),S.Bonettietal,NuovoCimentoA38,260,(1977)
18)AllasiaNuclPhysB343285(1990),S.J.Barishetal,Phys.Rev.D19,2521
(1979),Radeckyetal,Phys.Rev.D25,1161(1982),Kitagakietal,Phys.Rev.D34,2554(1986),Gabroschetal,Z.Phys.C41,527(19),Allenetal,Nucl.Phys.B2,221(1986),Belletal,Phys.Rev.Lett.41,1008(1978),Campbelletal,Phys.Rev.Lett.30,335(1973)
19)Dayetal,Phys.Rev.D28,2714(1983),Kitagakietal,Phys.Rev.D34,
2554(1988)
20)G.P.Zeller,submittedtoproceedingsof2ndInternationalWorkshoponNeu-trino-NucleusInteractionsintheFewGeVRegion(NUINT02),Irvine,Cal-ifornia,12-15Dec2002[hep-ex/0312061]
21)“ProposaltoMeasureParticleProductionintheMesonAreaUsingMain
InjectorPrimaryandSecondaryBeams”,P.D.Barnesetal,FERMILAB-PROPOSAL-0907,1998.
22)M.DiwanandJ.Nelson,NuMI-NOTE-STEEL-0639(2000)
23)PhDThesisofC.Smith,UniversityCollegeLondon,London,2002Calibration
oftheMINOSDetectorsandExtractionofNeutrinoOscillationParameters;PhDThesisofR.Nichol,UniversityCollegeLondon,London,2003CalibrationoftheMINOSDetectors
24)PhDthesisofM.A.Kordosky,UniversityofTexasatAustin,August2004
HadronicInteractionsintheMINOSDetectors
25)PhDthesisofP.L.Vahle,UniversityofTexasatAustin,August2004Elec-tromagneticInteractionsintheMINOSDetectors
26)E.A.Paschos,L.PasqualiandJ.Y.Yu,Nucl.Phys.B588,263(2000)and
E.A.Paschos,J.Y.YuandM.Sakuda[arXiv:hep-ph/0308130].27)D.Asheryetal.,Phys.Rev.C23,2173(1981).
28)H.Gallagher,Nucl.Phys.Proc.Suppl.112,188(2002)29)NuMIFluxescourtesyofMarkMessier
30)M.Arneodo,Phys.Rept.240,301(1994);G.PillerandW.Weise,Phys.
Rept.330,1(2000).
31)R.Merenyietal.,Phys.Rev.D45,743(1992).
32)Thesimulationassumedtheactivematerialwasresistiveplatechambersand
theabsorberwasparticleboard(hydrocarbons).
33)S.Nakayamaetal.,submittedtoPhys.Lett.B[hep-ex/0408134]
34)D.Allasiaetal,NuclPhys.B343285(1990),S.J.Barishetal,Phys.
Rev.D19,2521(1979),G.M.Radeckyetal,Phys.Rev.D25,1161(1982),T.Kitagakietal,Phys.Rev.D34,2554,(1986),H.J.Graboschetal,Z.Phys.C41,527(19).
35)W.Krenzetal,NuclPhys.B13545(1978)36)M.Derricketal,Phys.Lett.B92,363(1980)
37)H.Faissneretal.,Phys.Lett.B125,230(1983),E.Isiksaletal.,Phys.Rev.
Lett.52,1096(1984),H.J.Gabosch,Z.Phys.C31203(1986)
38)H.J.Gabosch,Z.Phys.C31203(1986),P.Vilainetal,Phys.Lett.B313,
267(1993),P.Marageetal,Z.Phys.C43,523(19)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务