compactK¨ahlerthreefolds,I.
YuujiTanaka
Abstract
Inthisarticle,weintroduceperturbedHermitian-Einsteinequa-tions,whichwecalltheDonaldson-Thomasequations,andstudylocal
propertiesofthemodulispaceofsolutionstotheequationssuchastheinfinitesimaldeformationandtheKuranishimapofthemodulispace.
1Introduction
Inthelate90’s,S.K.DonaldsonandR.P.Thomasproposedgaugethe-oryinhigherdimensionsin[DT].Subsequently,R.P.ThomasintroducedtheholomorphicCassoninvariantin[Th].TheholomorphicCassoninvari-antisadeformationinvariantofasmoothprojectiveCalabi-Yauthreefold,whichisobtainedfromthemodulispaceofsemi-stablesheaves.ThiscanbeviewedasacomplexanalogyoftheTaubes-CassoninvariantdefinedbyC.H.Taubesin[Ta].However,itisnotachievedasyettoconstructtheinvariantina“gaugetheoretic”,orananalyticway.
ThefirstcandidateofgaugeconfigurationswhichwoulddescribethisinvariantcouldbetheHermitian-Einsteinconnection,sincethetheHitchin-Kobayashicorrespondenceinsiststhatthereisaone-to-onecorrespondencebetweentheexistenceoftheHermitian-EinsteinconnectionandtheMumford-TakemotostabilityofanirreduciblevectorbundleoveracompactK¨ahlermanifold(seee.g.[Ko]).However,theHermitian-Einsteinequationsdonotformanellipticsystemevenaftergaugefixingincomplexdimensionthreeandmore,sothismightcausealittleproblem.
Toworkoutthisissue,DonaldsonandThomassuggestedaperturbationoftheHermitian-Einsteinequationsin[Th].ThisperturbationwasalsobroughtinbyBaulieu-Kanno-Singer[BKS]andIqbal-Nekrasov-Okounkov-Vafa[INOV]indifferentcontexts.
1
Letusintroducetheperturbedequationsmentionedabove:LetYbeacompactK¨ahlerthreefoldwiththeK¨ahlerformω,andE=(E,h)ahermi-tianvectorbundleofrankroverY.WeconsiderthefollowingequationsforaconnectionAofE,whichpreservesthehermitianstructureofE,andanEnd(E)-valued(0,3)-formuonY:
F0,2¯∗A+∂A
u=0,F1,1
A∧ω2+[u,u¯]=λ(E)IEω3,
whereλ(E)isaconstantdefinedby
λ(E):=
3(c1(E)·[ω]2)
arelationbetweentheDonaldson-Thomasequationsandthecomplexanti-self-dualequations.
2.1TheDonaldson-Thomasprogram
S.K.DonaldsonandR.P.Thomasproposedhigher-dimensionalanalogueoflow-dimensionalgaugetheoryin[DT].Morespecifically,theysuggestedthefollowingtwodirections;
1.Gaugetheoryincomplex2,3,4dimensions,
2.GaugetheoryonG2-manifoldsandSpin(7)-manifolds.
Thefirstoneconcernsa“complexification”ofthelow-dimensionalgaugetheory.Inthisdirection,ThomasintroducedtheholomorphicCassonin-variantin[Th],whichweshallrefertointhenextsection.Thesecondonecouldberelatedto“topologicalM-theory”proposedin[N],[DGNV].
2.2
TheholomorphicCassoninvariantonCalabi-Yauthree-folds
R.P.ThomasdefinedtheholomorphicCassoninvariantoveraCalabi-Yauthreefoldin[Th].WecansaythatitisacomplexanalogyoftheTaubes-CassoninvariantdefinedbyC.H.Taubesin[Ta].
TheTaubes-Cassoninvariantwasdefinedby“counting”flatconnec-tionsoveracompactorientedrealthree-manifold.DonaldsonandThomasspeculatedthatacomplexanalogyofthisCasson-Taubesinvariantwouldbeobtainedby“counting”holomorphicvectorbundlesoveraCalabi-Yauthreefold.
Basedonthisidea,ThomasdefinedtheholomorphicCassoninvariantofaCalabi-Yauthreefoldbyconstructingavirtualmodulicycleofthemodulispaceofsemi-stablesheavesundersometechnicalconditions.There,heusedwell-developedmachineriessuchasthecompactificationofthemodulispaceofsemi-stablesheavesbyGieseker,andtheperfecttangent-obstructiontheorybyLi-Tian[LT].
2.3
TheHermitian-EinsteinconnectionoverK¨ahlermani-folds
Ontheotherhand,astablevectorbundlehasadifferential-geometricde-scriptionthroughtheHitchin-Kobayashicorrespondence,whichsaysthat
3
thereisaone-to-onecorrespondencebetweentheexistenceoftheHermitian-EinsteinconnectionandtheMumford-TakemotostabilityofanirreducibleholomorphicvectorbundleoveracompactK¨ahlermanifold.
Thus,onemightexpectapossibilityofananalyticdefinitionoftheholomorphicCassoninvariantbyusingthemodulispaceoftheHermitian-Einsteinconnections.
However,thiswouldnotbeliterallytrue.OnecanseeitbyconsideringtheinfinitesimaldeformationoftheHermitian-Einsteinconnection,whichwasstudiedbyH-J.Kim[Ki].Webrieflylookbackonithere.
LetXbeacompactK¨ahlermanifoldofcomplexdimensionnwiththeK¨ahlerformω,E=(E,h)ahermitianvectorbundleoverX.AmetricpreservingconnectionAofEissaidtobeaHermitian-EinsteinconnectionifAsatisfiesthefollowingequations:
F0,2A=0,(2.1)ΛFA
1,1
=λ(E)IE,(2.2)
whereλ(E)isdefinedby
λ(E):=
n(c1(E)·[ω]n−1)
and
′+¯A¯A◦P0,2,:=P+◦DA,D:=DDA
whereP+,P0,2arerespectivelytheorthogonalprojectionsfromΩ2toΩ+,Ω0,2.
H-J.Kimprovedthat(2.4)isanellipticcomplexifAisaHermitian-Einsteinconnection.However,itisobviouslynottheAtiyah-Hitchin-Singertypecomplex[AHS]ifn≥3,sincethereareadditionaltermssuchasΩ0,3(X,End(E))andsoon.
2.4TheDonaldson-ThomasinstantononK¨ahlerthreefolds
Aswesawintheprevioussection,theHermitian-EinsteinconnectionwouldnotworkforananalyticconstructionoftheholomorphicCassoninvariant.Inordertoworkouttheaboveissue,we“perturb”theHermitian-Einsteinequations.ThisperturbationwasintroducedbyS.K.DonaldsonandR.P.Thomas,andtheypointedoutthattheseequationscouldworkforanana-lyticdefinitionoftheholomorphicCassoninvariantin[Th].
LetYbeacompactK¨ahlerthreefoldwiththeK¨ahlerformω,andEahermitianvectorbundleofrankroverY.WeconsiderthefollowingequationsforaconnectionAofE,whichpreservesthehermitianstructureofE,andanEnd(E)-valued(0,3)-formuonY:
0,2¯∗u=0,+∂FAA
1,1
∧ω2+[u,u¯]=λ(E)IEω3.FA
(2.7)(2.8)
Wecalltheseequations(2.7),(2.8)theDonaldson-Thomasequations,and
asolution(A,u)totheseequationsDonaldson-Thomasinstanton.
OnemaythinkoftheseequationsastheHermitian-Einsteinequationswithaperturbationu.However,wethinkofuasaHiggsfield,namely,anewvariable.OneofadvantagesofintroducingthenewfielduisthattheDonaldson-Thomasequationsformanellipticsystemafterfixingagaugetransformation,despitethefactthattheHermitian-EinsteinequationsoncompactK¨ahlerthreefoldsdonotformitinthesameway.
Theseequations(2.7),(2.8)werealsostudiedinphysicssuchas[BKS].Inthatcontext,theseequationsareinterpretedasabosonicpartofdimen-sionalreductionequationsoftheN=1superYang-Millsequationin10dimensionsto6dimensions(seealso[INOV],[NOV]).
¯AF0,2=0,theDonaldson-Remark2.1.IfoneusestheBianchiidentity∂A
5
Thomasequations(2.7),(2.8)arerewrittenby
∂¯∗A
u=0,(2.9)F0,2A=0,
(2.10)F1,1
A∧ω2+[u,u¯]=λ(E)IEω3,
(2.11)
since∂¯A∂¯∗Au=0implies∂¯∗A
u=0oncompactK¨ahlermanifolds.2.5
Thecomplexanti-self-dualequationsandtheDonaldson-Thomasequations
Inthissection,wedescribearelationbetweentheDonaldson-Thomasequa-tionsandthecomplexanti-self-dualequations.
First,weintroducethecomplexanti-self-dualequationsonCalabi-Yaufourfolds:LetXbeacompactCalabi-YaufourfoldwiththeK¨ahlerformωandtheholomorphic(4,0)-formθ.Weassumethefollowingnormalizationconditiononωandθ:
θ∧θ¯=
ω4WechoosetheCayleycalibrationonCalabi-YaufourfoldsasΩ,namely,weput
1
Ω:=4Re(θ)+
3
LocalstructuresofthespaceofDonaldson-Thomasinstantons
Inthissection,westudytheinfinitesimaldeformationandtheKuranishimapofthemodulispaceofDonaldson-Thomasinstantons.
3.1ThespaceofDonaldson-Thomasinstantons
LetYbeaK¨ahlerthreefoldwiththeK¨ahlerformω,E=(E,h)ahermitianvectorbundleoverY.
WedenotebyA(E)=A(E,h)thesetofconnectionsofEwhichpreservethehermitianstructureofE=(E,h).Put
Ω0,3(Y,End(E)):=A0,3(Y)⊗RΩ0(Y,End(E)),
whereA0,3(Y)isthespaceofreal(0,3)-formsoverYandEnd(E)=End(E,h)isthebundleofskew-hermitianendmorphismsofE,and
C(E):=A(E)×Ω0,3(Y,End(E)).
WedenotebyG(E)thegaugegroup,wheretheactionofthegaugegroupisdefinedintheusualway.ThesespacesareallequippedwithC∞-topology.SincetheactionofG(E)onC(E)isproper,C(E)/G(E)isHausdorff.
WedenotebyD(E)thesetofallDonaldson-ThomasinstantonsofE,namely,
D(E):={(A,u)∈C(E);(A,u)satisfiesequations(2.7),(2.8)}.Since(2.7),(2.8)aregaugeinvariant,
D(E)/G(E)→C(E)/G(E)
isinjective.Thus,D(E)/G(E)isalsoHausdorff.Wecall
M(E):=D(E)/G(E)
themodulispaceoftheDonaldson-Thomasinstantons.
3.2Theinfinitesimaldeformation
TheinfinitesimaldeformationofaDonaldson-Thomasinstanton(A,u)isgivenby
0→Ω0−→Ω1⊕Ω0,3−−→Ω+→0,
8
D
D+
(3.1)
where
Ωk:=Ωk(Y,End(E)):=Ak(Y,End(E)),
Ωp,q:=Ωp,q(Y,End(E)):=Ap,q(Y)⊗RΩ0(Y,End(E)),
(3.2)
andAk(Y,End(E))isthespaceoftherealk-formswithvaluesinEnd(E),Ap,q(Y)isthespaceofreal(p,q)-formsoverY,
Ω+:=Ω2∩(Ω2,0⊕Ω0,2⊕Ω0ω)
={φ+φ
¯+fω|φ∈Ω2,0,f∈Ω0},(3.3)
andDandD+aremapsdefinedby
D:g→(DAg,[u,g]),
(3.4)D+:(α,υ)→D+Aα+Λ2([u,υ¯]+[υ,u¯])+D¯∗A
υ(3.5)
forg∈Ω0and(α,υ)∈Ω1⊕Ω0,3,whereΛ:=(∧ω)∗.
If(A,u)istheDonaldson-Thomasinstanton,then(3.1)isacomplex.Infact,D+◦D=0followsdirectlyfromtheequations(2.7),(2.8).Proposition3.1.If(A,u)∈D(E),thenthecomplex(3.1)iselliptic.proof.Weprovethatthecomplex(3.1)isexactatthesymbollevel.
Letw=0bearealcotangentvectoraty∈Y.Wewrite
w=w1,0+w0,1,
wherew1,0isa(1,0)-formandw0,1=
TheexactnessatΩ+justfollowsfromthevanishingofthealternatingsum:
dimΩ0y−dim(Ω1⊕Ω0,3)y+dimΩ+
y
=1−(6+2)+
2·
3·2
c1(E)2−rc2(E)+r
2
2
3(−1)idimH0,i(Y).i=0
Remark3.2.IfahermitianvectorbundleEadmitsaHermitian-Einstein
connection,then
ω∧rc2(E)−
r−1
M
whereB(u,υ):=Λ2([u,υ¯]+[υ,u¯])andΛ(α):=(∧α)∗.Weput
S(A,u):={(α,υ)∈Ω1⊕Ω0,3|(α,υ)satisfies(3.10),(3.11),(3.12)}.Thereisanaturalmap
P:S(A,u)→D(E)/G(E)
(3.13)
definedby(α,υ)→[(A+α,u+υ)].
WedenotebyEnd0(E):=End0(E,h)thebundleoftrace-freeskew-hermitianendmorphismsofE,anddefine
˜k:=Ωk(Y,End0(E)):=Ak(Y,End0(E)),Ω
˜p,q:=Ωp,q(Y,End0(E)):=Ap,q(Y)⊗RΩ˜0,Ω
˜+:=Ω˜2∩(Ω˜2,0⊕Ω˜0,2⊕Ω˜0ω),Ω
andconsiderthesubcomplexof(3.1):
DD˜1˜+→0.˜0,3−˜0−−→Ω→Ω⊕Ω0→Ω
+
(3.14)
(3.15)
0i˜iWedenotebyH=H(Y,End(E))thei-thcohomologyofthecom-(A,u)(A,u)
plex(3.15)fori=0,1,2.
WedenotebyΓ(A,u)thestabilizerat(A,u)∈D(E)ofthegaugegroupG(E),namely,
Γ(A,u):={g∈G(E)|g(A,u)=(A,u)}.
Wecall(A,u)∈D(E)regularifthestabilizerΓ(A,u)istheidentity,irre-ducibleif(A,u)isregularorΓ(A,u)coincideswiththecenterofthestruc-ˆ(E)thesetofallturegroupofE,andreducibleotherwise.WedenotebyD
irreducibleDonaldson-ThomasinstantonsofE.
ˆ(E).Then,thereexistsaneighborhoodProposition3.3.Let(A,u)∈D
U(A,u)of0inS(A,u)suchthatthemapPinducesahomeomorphismbetweenU(A,u)/Γ(A,u)andaneighborhoodof[(A,u)]inD(E)/G(E).proof.First,weprovethatthemapislocallysurjective:
ˆ(E)iscloseenoughto(A,u)∈Lemma3.4.Supposethat(A+α,u+υ)∈D
ˆ(E),where(α,υ)∈Ω1⊕Ω0,3.ThenthereexistsagaugetransformationD
gwhichsatisfies
(g(A+α)−A,g(u+υ)−υ)∈S(A,u).
11
proof.Sincetheequations(3.10)and(3.11)aregaugeinvariant,whatweneedtoshowis
D∗(g(A+α)−A,g(u+υ)−υ)=0.
Fromtheassumptionthat(A,u)isirreducible,thekerneloftheLaplacian∆(0)onΩ0(Y,End(E))is1-dimensional.WedenotebyStheorthogonalcomponentofH0(Y,End(ES:=))inΩ0(s∈Ω0;
Y,End(E)),namely,
Tr(s)ω3=0,Y
sothat
Ω0=H0(Y,End(E))⊕S.
NotethatSisanidealoftheLiealgebraΩ0sinceTr([v1,v2])=0forall
v1,v2∈Ω0.
Wedefineamap
F:S×(Ω1⊕Ω0,3)→Sby
F(s,(α,υ)):=D∗(es(A+α)−A,es(u+υ)−u).
(3.16)ThemapFcanbeextendedtoasmoothmap
F:Lpp(Ω⊕Ω)→Lpk+1(S)⊕Lk10,3
k−1(S)
(3.17)
fork>6/p.Now,
∂F
Next,weprovethelocalinjectivityofthemapP:
Lemma3.5.If(A+α1,u+υ1)and(A+α2,u+υ2)aresufficientlycloseto(A,u)andifthereexistsagaugetransformationgsuchthat
g(A+α1,u+υ1)=(A+α2,u+υ2),
(3.20)
then
(α1,υ1)=(α2,υ2).
proof.Ifgissufficientlyclosetotheidentity,namely,g=eswiths∈Ω0closeenoughto0,thenLemma3.5followsfromtheimplicitfunctiontheorem.Infact,since(α1,υ1),(α2,υ2)∈S(A,u),wehave
F(s,(α1,υ1))=D∗(α2,υ2)=0,F(s,(α1,υ1))=D∗(α1,υ1)=0.
Thus,s=0,and(α1,υ1)=(α2,υ2).
Next,weconsiderthecasethatgisanarbitrarygaugetransformation.ByusingthedecompositionΩ0=H0⊕S,wewrite
s=csIdE+s1,
wherecsisaconstant,ands1∈S.Thenthereexistsaconstantz1>0suchthat
||DAs1||Lpk
≥z1||s1||Lpk+1
,(3.21)
Ontheotherhand,from(3.20),wehave
DAs=s◦α2−α1◦s.
(3.22)
Thus,
||DAs1||Lpk
=||DAs||Lp
k
=z2||s||Lpk+1
(||α1||Lpk
+||α2||Lpk
)
(3.23)
=z3(cs||IdE||Lp
k+1
+||s1||Lp+1
)(||α1||Lpk
+||α2||Lpkk
),
wherez2,z3>0aresomeconstants.Hence,weobtain
||scs||IdE||Lp(||α1||Lp+||α2||Lp1||k+1
k
k
)
Lp
k+1
≤
wherez4>0isaconstant.Fromthis,ifα1andα2aresmallenough,thencs=0.Thus,
1
s1cs
isclosetoIdE.Hence,wecanapplytheargumentbefore,wheregissuffi-cientlysmall.
WeintroducetheKuranishimap.Let∆(i),G(i),H(i)(i=0,1,2)beLaplacian,Greenfunction,andharmonicprojectionofthecomplex(3.1).Thesesatisfy
Id=H(i)+∆(i)◦G(i)fori=0,1,2.NotethatLaplacian∆(2)onΩ+iswrittenby
+∗+¯∗D¯′)+D(DA∆(2)=DAAA.
¯′:=DA◦P0,2.Fromthese,theleft-hand-sideof(3.10)becomeswhereDA
+
α+P+(α∧α)+B(u,υ)DA
+∗+
)◦G(2)◦(P+(α∧α)+B(u,υ)))(α+(DA=DA
¯∗D¯′◦G(2)◦(P+(α∧α)+B(u,υ))+D
A
A
(3.25)
+H(2)◦(P+(α∧α)+B(u,υ)).
Thus,weobtaintheorthogonaldecompositionof(3.10):
+∗+
)◦G(2)◦(P+(α∧α)+B(u,υ)))=0,(α+(DADA
¯∗D¯′◦G(2)◦(P+(α∧α)+B(u,υ))=0,D
A
(3.26)(3.27)(3.28)
H
A
(2)
◦(P+(α∧α)+B(u,υ))=0.
Alsotheleft-hand-sideof(3.11)is
∗∗′¯A¯A¯ADυ+Λ(α)(u+υ)=D(υ+D◦G(2)(Λ(α)(u+υ)))
+∗+
)◦G(2)◦(Λ(α)(u+υ))(DA+DA
(3.29)
+H(2)(Λ(α)(u+υ)).
Thus,theorthogonaldecompositionof(3.11)becomes
∗′¯A¯AD(υ+D◦G(2)(Λ(α)(u+υ)))=0,+∗+
)◦G(2)◦(Λ(α)(u+υ))=0,(DADA
(3.30)(3.31)(3.32)
H(2)(Λ(α)(u+υ))=0.
14
Now,wedefinetheKuranishimap
K:Ω1⊕Ω0,3→Ω1⊕Ω0,3
byK(α,υ)
+∗¯′◦G(2)(Λ(α)(u+υ))).)◦G(2)◦(P+(α∧α)+B(u,υ)),υ+D:=(α+(DAA
Weput
i(i)Hi:=Hi(A,u)(Y,End(E)):={ϕ∈Ω|∆ϕ=0}
(3.33)
fori=0,1,2.Then,fromthedefinitionoftheKuranishimap,weobtain
K(S(A,u))⊂H1⊕H0,3,
whereH0,3:=H0,3(Y,End(E))istheharmonicpartofΩ0,3(Y,End(E)).Theorem3.6.Let(A,u)beanirreducibleDonaldson-Thomasinstanton.˜2SupposethatH(A,u)=0.ThenthemapKgivesahomeomorphismfroma
neighborhoodof0inS(A,u)toaneighborhoodof0inH1⊕H0,3.proof.WeextendthemapKtoamap
p10,310,3
K:Lp(Ω⊕Ω)→Lkk(Ω⊕Ω)
for1
6/p.SincetheFrechetdifferentialofKat0
isidentity,theinversemappingtheoremontheBanachspaceinsiststhatthereexistaneighborhoodU⊂H1⊕H0,3andamap
10,3
L:U→Lpk(Ω⊕Ω)
suchthat
K(L(b,w))=(b,w).
02˜2FromtheassumptionthatH(A,u)=H(A,u)(Y,End(E))=0,wehave
H(2)◦(P+(α∧α)+B(u,υ))=0.
Lemma3.7.If(b,w)∈H1⊕H0,3issmallenough,thenL(b,w)∈S(A,u).
15
proof.Let(α,υ):=L(b,w).Then
b=α+(D+A
)∗
◦G(2)◦(P+(α∧α)+B(u,υ)),w=υ+D¯′A◦G(2)(Λ(α)(u+υ)).
Put
ξ:=D¯∗D¯′AA◦G(2)◦(P+(α∧α)+B(u,υ)),η:=D+
A
(D+A)∗◦G(2)◦(Λ(α)(u+υ)).Since(b,w)∈H1⊕H0,3issmallenough,L(b,w)∈S(A,u)and
H(2)◦(P+(α∧α)+B(u,υ)))=0.
Thus,weobtain
ξ=D+
A
α+P+(α∧α)+B(u,υ),η=D
¯∗A
υ+Λ(α)(u+υ).From(3.34),wehave
ξ0,2=(D+
A
α+P+(α∧α)+B(u,υ))0,2=D
¯Aα0,1+α0,1∧α0,1.Thus,[ξ0,2,α0,1]=[D
¯Aα0,1,α0,1],andξ=G(2)D¯∗AD¯′A(P+(α∧α)+B(u,v))=G(2)D
¯∗AD¯A(α0,1∧α0,1)=G(2)D¯∗A[D¯Aα0,1,α0,1]=
G(2)D¯∗A
[ξ0,2,α0,1]Therefore,
||ξ||Lpk
≤||ξ||Lp
k+1
≤z5||ξ||Lpk
||α||Lpk
,
wherez5>0isaconstant.Thus,ifαissmallenough,ξ=0.
Inasimilarway,weobtain
η=G(2)◦D+
A
(D+∗A)(∗[α,∗(u+υ)])=G(2)D+
A
∗D+A[α0,1,∗(u+υ)]=G(2)D+A
∗([D
¯Aα0,1,∗(u+υ)]−[α0,1,∗D∗Aυ])=
G(2)D+
A
∗[α0,1,∗η].
16
(3.34)(3.35)
(3.36)
(3.37)
(3.38)
(3.39)
Therefore,
||η||Lp≤||η||Lp
k
k+1
≤z6||α||Lp||η||Lp.
k+1
k+1
(3.40)
Thus,ifαissmallenough,η=0.
ˆ(E).SupposethatH˜2Corollary3.8.Let(A,u)∈D(A,u)=0.Thenevery
1˜u(A,˜)∈H(A,u)(Y,End(E))
ˆ(E)of(A,u).comesfroma1-parameterfamilyofvariations(At,ut)∈D
10,31proof.SinceH(α,υ˜)∈A,u)(Y,End(E))≃H⊕H,weprovethatforany(˜
H1⊕H0,3thereexists(αt,υt)∈Ω1⊕Ω0,3withα0=0,υ0=0suchthat
+
αt+P+(αt∧αt)+B(u,υt)=0,DA
∗¯ADυt+Λ(αt)(u+υt)=0,
andH(α˙)=α˜,H(υ˙)=υ˜,whereα˙:=ddtυt|t=0.
Iftissmallenough,thenthereexistsaunique(αt,υt)∈S(A,u)suchthat
∗
tα˜=αt+D+◦G(2)◦(P+(αt∧αt)+B(u,υt)),
′¯Atυ˜=υt+D◦G(2)(Λ(αt)(u+υt)).
Clearly,α0=υ0=0,andtα˜=H(αt),tυ˜=H(υt).Differentiatingthese
withrespecttot,weobtain
α˜=H(α˙),υ˜=H(υ˙).
˜0H(At,ut)=0followsfromtheuppersemi-continuityofthecohomology
oftheellipticcomplex.
References
[AHS]
M.F.Atiyah,N.J.Hitchin,andI.M.Singer.Self-dualityinfour-dimensionalRiemanniangeometry.Proc.Roy.Soc.LondonSer.A,362(1711):425–461,1978.
LaurentBaulieu,HiroakiKanno,andI.M.Singer.Specialquan-tumfieldtheoriesineightandotherdimensions.Comm.Math.Phys.,194(1):149–175,1998.
17
[BKS]
[DGNV]
RobbertDijkgraaf,SergeiGukov,AndrewNeitzke,andCumrunVafa.TopologicalM-theoryasunificationofformtheoriesofgravity.Adv.Theor.Math.Phys.,9:593–602,2005.
S.K.DonaldsonandR.P.Thomas.Gaugetheoryinhigherdimensions.InThegeometricuniverse(Oxford,1996),pages31–47.OxfordUniv.Press,Oxford,1998.
DanielS.FreedandKarenK.Uhlenbeck.Instantonsandfour-manifolds,volume1ofMathematicalSciencesResearchInstitutePublications.Springer-Verlag,NewYork,secondedition,1991.A.Iqbal,N.Nekrasov,A.Okounkov,andC.Vafa.Quantumfoamandtopologicalstrings.preprint,hep-th/0312022,2003.Hong-JongKim.ModuliofHermite-Einsteinvectorbundles.Math.Z.,195(1):143–150,1987.
ShoshichiKobayashi.Differentialgeometryofcomplexvectorbundles,volume15ofPublicationsoftheMathematicalSocietyofJapan.PrincetonUniversityPress,Princeton,NJ,1987.KanoMemorialLectures,5.
JunLiandGangTian.VirtualmodulicyclesandGromov-Witteninvariantsofalgebraicvarieties.J.Amer.Math.Soc.,11(1):119–174,1998.
NikitaNekrasov.Z-theory:chasingm/ftheory.C.R.Phys.,6(2):261–269,2005.Strings04.PartII.
NikitaNekrasov,HirosiOoguri,andCumrunVafa.S-dualityandtopologicalstrings.J.HighEnergyPhys.,(10):009,11pp.(electronic),2004.
CliffordHenryTaubes.Casson’sinvariantandgaugetheory.J.DifferentialGeom.,31(2):547–599,1990.
R.P.Thomas.AholomorphicCassoninvariantforCalabi-Yau3-folds,andbundlesonK3fibrations.J.DifferentialGeom.,54(2):367–438,2000.
GangTian.Gaugetheoryandcalibratedgeometry.I.Ann.ofMath.(2),151(1):193–268,2000.
[DT]
[FU]
[INOV][Ki][Ko]
[LT]
[N][NOV]
[Ta][Th]
[Ti]
18
DepartmentofMathematics,M.I.T.
77MassachusettsAvenue,CambridgeMA02139,USA.e-mail:tanaka@math.mit.edu
19
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务