§5 用Mathematica求重积分以及相关的应用练习解答
1 计算下列重积分: (1)
(y2x)dxdy,其中D=[3,5]×[1,2];
D解 In[1]:= Integrate[y-2x,{x,3,5},{y,1,2}] Out[1]= -13 (2)
Cos(xy)dxdy,其中D=[0,
D]×[0,]; 2解 In[1]:= Integrate[Cos[x+y],{x,0,Pi/2},{y,0,Pi}] Out[1]= -2
(3) 域;
解 In[1]:= a=Plot[Sqrt[2x],{x,0,2},DisplayFunction->Identity];
b=ParametricPlot[{2,y},{y,0,4}, DisplayFunction->Identity]; Show[a,b,PlotRange->{0,4}, DisplayFunction->$ DisplayFunction]
43.532.521.510.50.511.5222y2px与直线x,其中由抛物线xydxdyDDp(p0)所围成的区2 Out[1]= -Graphics-
In[2]:= Integrate[x*y^2,{x,0, 2},{y,0,2px}]
16px3Out[2]=
3(4)
222xya,其中为圆域; |xy|dxdyDD 1073
解 In[1]:= ParametricPlot[{Sin[t],Cos[t],{t,0,2Pi},AspectRatio->Automatic}
10.5-1-0.50.51-0.5-1 Out[1]= -Graphics-
In[2]:= Integrate[Abs[x*y],{x,-1,1},{y,-Sqrt[a^2-x^2],Sqrt[a^2-x^2] }] Out[2]= (5)
2]×[0,]; 22xcosycoszdxdydz,其中V=[0,1]×[0,
V解 In[1]:= Integrate[x*Cos[y]*Cos[z],{x,0,1},{y,0,Pi/2 },{ z,0,Pi/2 }] Out[1]= (6)
1 2ycos(xz)dxdydz,其中V是由yx,y=0,z=0及x+z=V所2围成的区域。
解 In[1]:= a=ParametricPlot3D[{x,y,Pi/2-x},{x,0,2},{y,0,2},
DisplayFunction->Identity];
b=ParametricPlot3D[{x,Sqrt[x],z},{x,0,2},{y,0,2},
DisplayFunction->Identity];
c=Plot3D[0,{x,0,2},{y,0,2},DisplayFunction->Identity]; d= Plot3D [0,{x,0,2},{z,0,2}, DisplayFunction->Identity];
Show[a,b,c,d,AxesLabel->{“x”,”y”,”z”}, AspectRatio->Automatic,
PlotRange->{0,2},DisplayFunction->$DisplayFunction, ViewPoint->{1,-2,0}]
1074
2 0 0.5 x 1 1.5 2 1.5 z 1 0.5 2 1.5 1 0.5y 0
Out[1]= -Graphics3D-
0 In[2]:= Integrate[y*Cos[x+z],{x,0, Pi/2},{y,0, Sqrt[x]},{ z,0,Pi-x}] Out[2]= 1 22 求下列曲面所围成立体V的体积。
(1) V是由zx2y2和z=x+y所围成的立体; 解 In[1]:= a=Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},
DisplayFunction->Identity];
b=Plot3D[x+y,{x,-1,2},{y,-1,2},
DisplayFunction->Identity];
Show[a,b,AxesLabel->{“x”,”y”,”z”},PlotRange->{-2,5},
DisplayFunction->$DisplayFunction,ViewPoint->{0,2,0} Shading->False]
210-1-2y420210x-1-2-2 zOut[1]= -Graphics3D-
1075
In[2]:= x=r*Cos[t]+1/4
y=r*Sin[t]+1/4
Integrate[x^2+y^2-x-y,{x,0, Pi/2},{y,0,1/2}]
Out[2]=
8(2) V是由曲面z22x2y2和zx2y2所围成的立体; 解 In[1]:= a=Plot3D[2-x^2-y^2,{x,-1,1},{y,-1,1},
DisplayFunction->Identity];
b= ParametricPlot3D[{u*Cos[v],u*Sin[v],u^2},{u,-1,2},{v,-Pi,Pi},
DisplayFunction->Identity];
Show[a,b,AxesLabel->{“x”,”y”,”z”},PlotRange->{0,2},
DisplayFunction->$DisplayFunction]
21.5z10.500-20x2-22y Out[1]= -Graphics3D-
In[2]:= ParametricPlot[{Sin[t],Cos[t]},{t,0,2Pi}, AxesLabel->{“x”,”y”,”z”},
AspectRatio->Automatic]
1076
y10.5-1-0.50.51x-0.5-1 Out[2]= -Graphics-
In[3]:= Integrate[2-x^2-y^2,{x,0,1},{y,0,Sqrt[1-x^2]}] Out[3]= 4
1077