气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:
1、高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。
2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。 3、高效能:可把组分复杂的样品分离成单组分。
4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。
5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的。
6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。 7、设备和操作比较简单。
气相色谱法的一些常用术语及基本概念解释:
1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。
2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。 3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。
4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以x1/2表示。 5、峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。
6、死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。从进样到出现色谱峰最高值所需的时间称保留时间,以tr表示。保留时间与死时间之差称校正保留时间。以Vd表示。
7、死体积,保留体积与校正保留体积:死时间与载气平均流速的乘积称为死体积,以Vd表示,载气平均流速以Fc表示,Vd=tdxFc。保留时间与载气平均流速的乘积称保留体积,以Vr表示,Vr=trxFc。
8、保留值与相对保留值:保留值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。以一种物质作为标准,而求出其他物质的保留值对此标准物的比值,称为相对保留值。
9、仪器噪音:基线的不稳定程度称噪音。
气相色谱仪
气相色谱仪一般由气路系统、进(取)样系统、色谱柱、检测器、信号放大处理系统和记录系统等部分组成。样品分析流程:N2或H2等载气(用来载送试样而不与待测组分作用的惰性气体)由高压载气瓶供给,经减压阀(表头a指示瓶压,表头b指示输出压力)减压后进入净化干燥器,以除去载气中杂质和水分,再由针形阀控制载气流量(由流量计指示)和压力(由压力表指示),然后通过汽化室进入色谱柱。待载气流量,汽化室、色谱柱、检测器的温度以及基线稳定后,试样可由进样器进入汽化室,则液体试样立即汽化为气体并被载气带入色谱柱。因色谱柱中的固定相对试样中不同组分的吸附能力或溶解能力也不同,从
而使试样中各种组分彼此分离而先后流出色谱柱。并进入检测器,检测器得到不同组分的浓度(或质量)变化转变为电信号,并经放大器放大后,通过记录仪即可得到其色谱图。
下面分别简述各部分的构造及其原理。 1 气路系统
气路系统一般由氢气发生器(或高压载气瓶)、减压阀、气流调节阀和有关连接气路组成。它提供载气和气体通路,所用的载气是由氢气发生器(或高压载气瓶)提供。载气常用氢气、氮气、氦气、氩气和二氧化碳等,有时也用洁净的空气,但一般使用氢气和氮气为多。 对气体纯度选择的一般原则
1. 从分析角度讲,微量分析比常量分析要求高。也就是说,气体中的杂质含量必须低于被分析组分的含量,如果用TCD分析10ppm的CO,则载气中的杂质总含量不得超过10ppm,因为99.999%纯度的气体则含0.001%的杂质,相当于10ppm所以对于10ppm的痕量分析,载气的纯度应高于99.999%;对于FID使用气体,碳氢化合物含量必须很低,载气中的大量氧杂质只要不对色谱柱造成影响,就不影响FID的性能。 2. 毛细管柱分析比填充柱分析要求高; 3. 程序升温分析比恒定温度分析要求高; 4. 浓度型检测器比质量型检测器要求高;
5. 从仪器寿命和保持仪器的高灵敏度讲,中高档仪器比低当仪器要求高;
TCD: 氦做载气:至少纯度为99.995%。杂质含量分别为:氖<10ppm; 氮 <10ppm; 氧<2.5 ppm; 氩<0.1 ppm; 二氧化碳<0.25 ppm。
氢做载气: 至少纯度为99.995%。 杂质含量分别为: 氮<1 ppm; 氧<5 ppm; 二氧化碳<1 ppm; 水<5 ppm; 总烃<1 ppm;。
FID: 氮做载气: 至少纯度为99.998%。杂质含量分别为:氢<1 ppm; 氧<1 ppm; 氩<10ppm; 二氧化碳<1 ppm; 水<5 ppm; 甲烷<1 ppm。 氢气: 同TCD
空气: 呼吸级杂质:氩,氪,水,氦,氖均小于1%; 二氧化碳<500 ppm; 一氧化碳<10ppm; 总烃<0.02 ppm; 甲烷<20 ppm。
载气流速一般要求:填充柱:10~60mL/min,毛细管:0.5~5 mL/min
检测器气体流速一般要求:氢气24~60mL/min,空气200~600mL/min,柱+尾吹气10~60mL/min 2 进样系统
进样器:液体采用微量注射器进样,进样量0.5~10μL,气体采用气体定量管(六通阀)、特种气相注射器进样,进样量0.5~3mL。 气化室温度要求:
a、气化室温度控制在使样品瞬间气化而不造成样品分解为最佳。
b、气化温度取决于样品的挥发性、沸点、稳定性以及进样量,一般选择稍高于样品沸点,但不要超过沸点50%以上,以防分解。一般比柱温高10~50℃ 3 色谱柱
色谱柱是气相色谱仪的核心部件,柱子一般采用不锈钢或玻璃管制成U 形或螺旋形。它又可分为填充柱和空心毛细管柱。
填充柱一般内径为2~6mm,长为1~6m,管内装有颗粒担体或吸附剂,主要用于一般混合物的分析,其分离效能较低,但柱容量较大。
毛细管柱一般内径为0.1~O.5mm,长3O~300m,空心管壁涂有固定液,主要用于复杂混合物的分析。其分离效能高,但柱容量较低,允许进样量小。 柱温不能高于色谱柱的最高使用温度(色谱柱标明最高使用温度)。
4 检测器(又称鉴定器)
检测器是气相色谱仪的重要部件,从色谱柱流出的各个组分,通过检测器将其浓度变化转换成易于测量的电信号。 4.1 检测器的种类
色谱仪的检测器种类很多,根据其检测原理的不同可分为浓度型检测器和质量型检测器。
浓度型检测器给出的信号大小取决于进入检测器的载气中组分的浓度,也就是响应信号与载气中组分的浓度成正比。浓度型检测器有热导池、电子捕获及气体密度天平等检测器。 质量型检测器给出的信号大小取决于单位时间内由载气带入检测器中的组分质量,既响应信号与单位时间内通过检测器的组分的量成正比。质量型检测器有氢焰离子化、氩离子化及火焰光度检测器等。 4.2 检测器的性能指标
一般都希望检测器能具有灵敏度高、噪声小、稳定性好、响应速度快及线性范围宽等特点。其衡量指标主要有灵敏度和敏感度。
4.3 热导池检测器(TCD)
热导池一般采用金属(不锈钢或黄铜)作池体,内装二根或四根阻值相等的铼钨丝、钨丝或铂丝作热敏元件,分别构成热导池的参考臂和工作臂,即构成惠斯顿电桥。
由电源给电桥提供恒定的电流或电压,以加热热敏元件,当两臂都只有纯载气通过时,由于载气带走两臂的热量是相同的,所以两臂的温度是相同的,电桥处于平衡状态。即根据电桥平衡原理,此时电桥AB两端的电位差为零,无信号输出,记录仪记录的是一平直的基线。
当加入样品后,此时参考臂仍然仅有纯载气通过,其电阻值不变;而工作臂有载气和样品(导热系数不同)通过,使电阻值改变,电桥失去平衡,在AB之间产生电位差,电桥有信号输出,记录仪记录相应的色谱信号峰值,当组分全部通过后,两臂又都均为纯载气通过。电桥恢复平衡。记录恢复基线状态。
热导池检测器是利用组分蒸气和载气导热系数不同来测定各组分的,因此当载气的导热系数与组分的导热系数相差越大时,其灵敏度就越高,故通常以导热系数较大的氢气或氦气作载气为好。若以氮气作载气,由于它的导热系数与许多被测组分相近,故灵敏度较低,有时甚至会出现负峰。
热导池检测器在使用时应选择合适的桥电流,增大电流可以提高灵敏度,但电流过大时噪声将会增高。造成基线不稳。一般桥电流100~150mA之间为宜,一般不能超过200mA。 使用注意事项:
影响热导池灵敏度的主要因素有:电路电流、载气性质、热敏元件灵敏度、池体温度稳定性等。
使用注意事项
1. 确保热丝不被烧断!在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝可能被烧断,致使检测器报废!同时,关机时一定要先关检测器电源,然后关载气。任何时候进行有可能切断通过TCD载气流量的操作,都要关闭检测器电源。这是TCD操作必须遵循的规则!
2. 载气中含有氧气时,会使热丝寿命缩短,所以有TCD时载气必须彻底除氧。而且不要使用聚四氟乙烯作载气输送管,因为它会渗透氧气。
3. 载气种类对TCD的灵敏度影响较大。原则是讲,载气与被测物的传热系数之差越大越好,故氢气或氦气作载气时比氮气作载气时的灵敏度高。当然,要测定氢气时就必须用氮气作载气。
4.氢气做载气时尾气一定要排到室外。 4.4 氢焰离子化检测器(FID)
氢焰离子化检测器是利用有机物在氢气—— 空气火焰中产生离子化反应而生成许多离子对,在加有一定电压的两极间形成离子流。测量离子流的强度就可对该组分进行检测。它具有灵敏度高、响应快、线性范围宽、死体积小等优点,是目前广泛使用的一种检测器。 4.4.1 FID检测器结构与检测原理
氢焰离子化检测的核心部分是离子室,一般用不锈钢制作,主要包括气体人口、火焰喷嘴、极化极和收集极等构成。
在离子室底部,氢气与载气在进入喷嘴前混合。助燃气— — 空气由侧方引入,在喷嘴口点火燃烧形成氢焰。火焰上方有一筒状收集电极,下方有一圆环状极化电极(也称发射极)。两极间施以恒定的电压,使热分解形成的离子在两极问作定向流动而产生电流。当没有有机物通过检测器时,氢气在空气中燃烧形成的离子极少,即基流很小,记录仪记录基线。当有有机物进入检测器时,由于有机物的离子化产生大量离子,使产生的电流大大的增强,记录仪记录相应的色谱峰。产生电流的大小与有机物的进入量成正比。由于离子室输出的电流较弱,需经高电阻转为电压输出后,再经放大记录其检测结果。 4.4.2 氢焰离子化机理
有机物的气态分子是不导电的,必须在能量作用下,使之产生离子化,氢火焰即为所提供的能源。氢焰使有机物离子化的机理尚不十分清楚,但目前多认为是一个化学电离过程。下面以苯为例,其化学电离过程如下:
C6H6→6CH 6CH +302-→6CHO++6e 6CHO++6H2O→6CO +6H3O+
即苯在氢火焰作用下,首先裂解为CH 自由基,与进入火焰的O2反应,生成CHO及电子,CHO 又与火焰中生成的水蒸气分子碰撞产生O正离子,此时H3O及CHO和电子在电场作用下产生电流。
氢焰检测器仅能分析有机物,不适于分析惰性气体、空气、水、CO、C02、C 、NO、S02、H2S。 氢焰检测器的注意事项:
1、离子头绝缘要好,外壳要接地;
2、氢焰离子化检测器使用温度应大于是100度,最好在150℃以上; 3、离子头的喷嘴和收集极,在使用一定时间后应进行清洗。 气相色谱试验条件的选择 1. 色谱柱的选择
要注意极性及最高使用温度,柱温不能超过最高使用温度。固定相按极性相似的原则选择。
色谱柱的内径大小、长度都能影响分离率。一般而言,内径越小,长度越长,分离效果越好,一般柱长为1m~5m(毛细管柱则20m~100m)。
填充剂颗粒一般采用40目~60目,60目~80目及80目~100目大小。长柱子宜用粒度大些的,以减少柱压降,短柱子则用粒度细的。
气相色谱中固定液的含量对分离效率的影响较大。一般采用固定液与载体重量之比为15︰100~25︰100。采用高灵敏度的检测器,由于进样量减少,固定液含量可以降至5︰100以下。这样可以使用较低柱温,从而提高柱效,缩短分析时间。但固定液用量太少会引起吸附。
2.柱温选择
柱温选择对分离度影响很大,是条件选择的关键。选择的基本原则是:在使最难分离的组分有尽可能好的分离高度的前提下,尽可能采取较低温度,但以保留时间适宜及不拖尾为度。
⑴ 高沸点混合物(200℃~400℃),若需在较低的柱温下分析,可采用低固定液配比1%~3%,采用高灵敏检测器,柱温可比沸点低100℃~150℃,在200℃~250℃的柱温下分析。
⑵ 沸点<300℃的样品,可用3%~25%固定液配比。沸点越低,所用配比越高,柱温可比平均沸点低50℃至平均沸点的范围选择。 3.载体选择
载体采用低线速时,宜用氮气;高线速时用氢气。柱越长,柱内有较大压力降,宜用氢气。载气采用低线速时为10ml~60ml/min。 4.其它条件
⑴ 气化室温度及检测室温度选择:气化温度取决于样品的挥发性、沸点、稳定性以及进样量,一般选择稍高于样品沸点,但不要超过沸点50%以上,以防分解。检测室温度需高于柱温,一般高于柱温30℃左右或与气化室同温。
⑵ 进样量:固定相在配比15%~35%的层析柱时,最大进样量液体为10μl,气体为10ml。一般样品量液体4μl,气体为0.5ml~3ml,固体小于1mg。
⑶ 桥电位选择:散热多和选择大的桥电位,在灵敏度相同的情况下,应尽量选择低桥电位,以保护热敏元件。 气相色谱结果分析
气相色谱层析是一种分离分析的方法,因此它的特点是适合于多组分混合物的定性和定量分析。
1.定性
对于一已知范围的混合物,用此法定性很容易,但对于范围未知的混合物来说,则需要配合化学分析及其它仪 器分析等。
⑴ 利用保留值定性法:同一种物质在一根层析柱上保留时间相同。取样品各可能组分的纯物质加入样品中,混合进样,对此加入后的色谱图,若某色谱峰相对谱高,则该色谱峰的组分与纯物质可能为同一物质。
⑵ 化学反应定性法:即把色谱柱的流出物,通过官能团试剂中,观察试剂的颜色是否发生变化或是否有沉淀,而判断该组分含什么官能团或属于何类化合物。
⑶ 两谱联用定性法:即利用质谱仪、红外分光光度计等来进行测定,定性。 2.定量
定量方法主要有:归一化法、外标法、内标法等 归一化法
有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。
归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。 外标法
用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的
方法称为外标法。此法可分为工作曲线法及外标一点法等。工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。
外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量: W=A(W)/(A)
式中W与A分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。(W)及(A)分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。外标法方法简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。但此法的准确性受进样重复性和实验条件稳定性的影响。此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。
外标法 :色谱分析中的一种定量方法,它不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。 内标法
选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。
一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。 使用注意事项
一、进样应注意问题
手不要拿注射器的针头和有样品部位、不要有气泡(吸样时要慢、快速排出再慢吸,反复几次, 10ul 注射器 金属针头部分体积 0.6ul ,有气泡也看不到,多吸 1-2ul 把注射器针尖朝上气泡上走到顶部再推动针杆排除气泡,(指 10ul 注射器,带芯子注射器平感觉)进样速度要快(但不易特快),每次进样保持相同速度,针尖到汽化室中部开始注射样品。
气体进样一般常用的是六通阀,六通阀连接定量管,进样体积可以选择。对于外标法我们要严格要求进样量,每次进样量要相同,对于气体要在常压下进行进样,确保进行体积一致。 二、安装色谱柱
1. 安装拆卸色谱柱必须在常温下。
2. 填充柱有卡套密封和垫片密封,卡套分三种,金属卡套,塑料卡套,石墨卡套,安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的垫片(岛津色谱是垫片密封)。 3. 色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。
4. 毛细管色谱柱安装插入的长度要根据仪器的说明书而定,不同的色谱汽化室结构不同,所以插进的长度也不同。需要说明的如果你用毛细管色谱柱采用不分流,汽化室采用填充柱接口这时与汽化室连接毛细管柱不能探进太多,略超出卡套即可。
三、氢气和空气的比例对 FID 检测器的影响
氢气和空气的比例应 1 : 10 ,当氢气比例过大时 FID 检测器的灵敏度急剧下降,在使用色谱
时别的条件不变的情况下,灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出“砰”的一声,随后就灭火,一般当你点火电着就灭,再点还着随后又灭是氢气量不足。
四、使用 TCD 检测器
1. 氢气做载气时尾气一定要排到室外。
2. 氮气做载气桥流不能设大,比用氢气时要小的多。
3. 没通载气不能给桥流,桥流要在仪器温度稳定后开始做样前在给。
五、如何判断 FID 检测器是否点着火
不同的仪器判断方法不同,有基流显示的看基流大小,没有基流显示的用带抛光面的扳手凑近检测器出口,观察其表面有无水汽凝结 。
六、如何判断进样口密封垫是否该换
进样时感觉特别容易,用 TCD 检测器不进样时记录仪上有规则小峰出现,说明密封垫漏气该更换。更换密封垫不要拧的太紧,一般更换时都是在常温,温度升高后会更紧,密封垫拧的太紧会造成进样困难,常常会把注射器针头弄弯。
七、如何选择合适的密封垫
密封垫分一般密封垫和耐高温密封垫,汽化室温度超过 300 ℃时用耐高温密封垫,耐高温密封垫的一面有一层膜,使用时带膜的面朝下。
八、怎样防止进样针不弯
很多做色谱分析工作的新手常常会把注射器的针头和注射器杆弄弯,原因是:
1. 进样口拧的太紧,室温下拧的太紧当汽化室温度升高时硅胶密封垫膨胀后会更紧,这时注射器很难扎进去。
2. 位置找不好针扎在进样口金属部位。
3. 注射器杆弯是进样时用力太猛,进口色谱带一个进样器架,用进样器架进样就不会把注射器杆弄弯。
4. 因为注射器内壁有污染,注射时将针杆推弯。注射器用一段时间就会发现针管内靠近顶部有一小段黑的东西,这时吸样注射感到吃力。清洗方法将针杆拔出,注入一点水,将针杆插到有污染的位置反复推拉,一次不行再注入水直到将污染物弄掉,这时你会看到注射器内的水变的浑浊,将针杆拔出用滤纸擦一下,再用酒精洗几次。分析的样品为溶剂溶解的固体样时,进完样要及时用溶剂洗注射器。
5. 进样时一定要稳重,急于求快会把注射器弄弯的,只要你进样熟练了自然就快了。 九、开关机注意事项
开机前先打开载气、氢气、空气总阀开关,检查二次表压力,氢气、氮气、空气、氦气一般是0.4MPa左右。然后再打开仪器电源,待仪器通过自检后再打开工作站,确认每根柱子都有流量,再升温做样。关机时,可先通过软件关掉检测器及空气、氢气,将进样口、柱箱、检测器温度降至接近室温,然后关掉软件,然后再关主机,最后再关载气及其它辅助气。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务