您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页bst R包 简介

bst R包 简介

来源:五一七教育网
Package‘bst’

December19,2015

TypePackageTitleGradientBoostingVersion0.3-11Date2015-12-07

AuthorZhuWang[aut,cre],

TorstenHothorn[ctb]

MaintainerZhuWang

DescriptionFunctionalgradientdescentalgorithmforavarietyofconvexandnonconvexlossfunc-tions,forbothclassicalandrobustregressionandclassificationproblems.HingeBoostisimple-mentedforbinaryandmulti-classclassification,withunequalmisclassificationcostsforbi-narycase.Thealgorithmcanfitlinearandnonlinearclassifiers.Importsrpart,methods,foreach,doParallelDependsgbmSuggestshdi,pROCLicenseGPL(>=2)LazyLoadyesNeedsCompilationnoRepositoryCRAN

Date/Publication2015-12-1911:01:59

Rtopicsdocumented:

bst-package.bst......bst.sel....bst_control.cv.bst....cv.mada...cv.mbst...cv.mhingebstcv.mhingeova

.......................................................................................................................................1.........................................................................................................................................................................................................................2.2.5.6.8.9.10.11.12

2

ex1data..loss....mada....mbst....mhingebst.mhingeova.nsel....rbst....rbstpath..rmbst...

Index

..........................................................................................................................................................................................................................................................................................................................................................................................................................

bst1314141518192122232427

bst-packageBoostingforClassificationandRegression

Description

Gradientdescentboostingforhingelossandsquareerrorloss.Details

Package:Type:Version:Date:License:LazyLoad:

bst

Package0.1

2010-04-15GPL-2yes

Author(s)

ZhuWang

bstBoostingforClassificationandRegression

Description

Gradientboostingforoptimizinghingeorsquarederrorlossfunctionswithcomponentwiselinear,smoothingsplines,treemodelsasbaselearners.

bstUsage

3

bst(x,y,cost=0.5,family=c(\"gaussian\\"hinge\\"hinge2\\"binom\\"expo\

\"poisson\\"tgaussianDC\\"thingeDC\\"tbinomDC\\"binomdDC\\"texpoDC\\"tpoissonDC\\"huber\\"thuberDC\"),ctrl=bst_control(),control.tree=list(maxdepth=1),learner=c(\"ls\\"sm\\"tree\"))##S3methodforclass󰁅bst󰁅print(x,...)

##S3methodforclass󰁅bst󰁅

predict(object,newdata=NULL,newy=NULL,mstop=NULL,

type=c(\"response\\"all.res\\"class\\"loss\\"error\"),...)##S3methodforclass󰁅bst󰁅

plot(x,type=c(\"step\\"norm\"),...)##S3methodforclass󰁅bst󰁅

coef(object,which=object$ctrl$mstop,...)##S3methodforclass󰁅bst󰁅

fpartial(object,mstop=NULL,newdata=NULL)Arguments

xycostfamily

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbein{1,-1}forfamily=\"hinge\".

pricetopayforfalsepositive,0typeofpredictionorplot,seepredict,plotcontrolparametersofrpart.

acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.classofbst.

newdataforpredictionwiththesamenumberofcolumnsasx.newresponse.

boostingiterationforprediction.

atwhichboostingmstoptoextractcoefficients.additionalarguments.

ctrltype

control.treelearnerobjectnewdatanewymstopwhich...Details

Boostingalgorithmsforclassificationandregressionproblems.Inaclassificationproblem,supposefisaclassifierforareponsey.Acost-sensitiveorweightedlossfunctionis

L(y,f,cost)=l(y,f,cost)max(0,(1−yf))

4

Forfamily=\"hinge\",

l(y,f,cost)=1−cost,ify=+1;

cost,ify=−1

bst

Forfamily=\"hinge2\",l(y,f,cost)=1,ify=+1andf>0;=1-cost,ify=+1andf<0;=cost,ify=-1andf>0;=1,ify=-1andf<0.

Fortwinboostingiftwinboost=TRUE,therearetwotypesofadaptiveboostingiflearner=\"ls\":fortwintype=1,weightsarebasedoncoefficientsinthefirstroundofboosting;fortwintype=2,weightsarebasedonpredictionsinthefirstroundofboosting.SeeBuehlmannandHothorn(2010).Value

Anobjectofclassbstwithprint,coef,plotandpredictmethodsareavailableforlinearmodels.Fornonlinearmodels,methodsprintandpredictareavailable.x,y,cost,family,learner,control.tree,maxdepth

Theseareinputvariablesandparametersctrlyhatensml.fitensemblexselectcoefAuthor(s)

ZhuWangReferences

ZhuWang(2011),HingeBoost:ROC-BasedBoostforClassificationandVariableSelection.TheInternationalJournalofBiostatistics,7(1),Article13.

PeterBuehlmannandTorstenHothorn(2010),TwinBoosting:improvedfeatureselectionandpre-diction,StatisticsandComputing,20,119-138.SeeAlso

cv.bstforcross-validatedstoppingiteration.Furthermoreseebst_control

theinputctrlwithpossibleupdatedfkiffamily=\"thingeDC\\"tbinomDC\\"binomdDC\"predictedfunctionestimates

alistoflengthmstop.Eachelementisafittedmodeltothepsedoresiduals,definedasnegativegradientoflossfunctionatthecurrentestimatedfunctionthelastelementofens

avectoroflengthmstop.Eachelementisthevariableselectedineachboostingstepwhenapplicableselectedvariablesinmstop

estimatedcoefficientsineachiteration.Usedinternallyonly

bst.selExamples

x<-matrix(rnorm(100*5),ncol=5)c<-2*x[,1]

p<-exp(c)/(exp(c)+exp(-c))y<-rbinom(100,1,p)y[y!=1]<--1

x<-as.data.frame(x)

dat.m<-bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")predict(dat.m)

dat.m1<-bst(x,y,ctrl=bst_control(twinboost=TRUE,

coefir=coef(dat.m),xselect.init=dat.m$xselect,mstop=50))

dat.m2<-rbst(x,y,ctrl=bst_control(mstop=50,s=0,trace=TRUE),rfamily=\"thinge\learner=\"ls\")predict(dat.m2)

5

bst.selFunctiontoselectnumberofpredictors

Description

Functiontodeterminethefirstqpredictorsintheboostingpath,orperform(10-fold)cross-validationanddeterminetheoptimalsetofparametersUsage

bst.sel(x,y,q,type=c(\"firstq\\"cv\"),...)Arguments

xyqtype...Details

Functiontodeterminethefirstqpredictorsintheboostingpath,orperform(10-fold)cross-validationanddeterminetheoptimalsetofparameters.Thismaybeusedforp-valuecalculation.Seebelow.Value

Vectorofselectedpredictors.Author(s)

ZhuWang

Designmatrix(withoutintercept).

Continuousresponsevectorforlinearregression

Maximumnumberofpredictorsthatshouldbeselectediftype=\"firstq\".iftype=\"firstq\",returnthefirstqpredictorsintheboostingpath.iftype=\"cv\",perform(10-fold)cross-validationanddeterminetheoptimalsetofparametersFurtherargumentstobepassedtobst,cv.bst.

6Examples

##Notrun:

x<-matrix(rnorm(100*100),nrow=100,ncol=100)y<-x[,1]*2+x[,2]*2.5+rnorm(100)sel<-bst.sel(x,y,q=10)library(\"hdi\")

fit.multi<-hdi(x,y,method=\"multi.split\model.selector=bst.sel,

args.model.selector=list(type=\"firstq\q=10))fit.multi

fit.multi$pval[1:10]##thefirst10p-valuesfit.multi<-hdi(x,y,method=\"multi.split\model.selector=bst.sel,

args.model.selector=list(type=\"cv\"))fit.multi

fit.multi$pval[1:10]##thefirst10p-values##End(Notrun)

bst_control

bst_controlControlParametersforBoosting

Description

Specificationofthenumberofboostingiterations,stepsizeandotherparametersforboostingalgo-rithms.Usage

bst_control(mstop=50,nu=0.1,twinboost=FALSE,twintype=1,threshold=c(\"standard\\"adaptive\"),f.init=NULL,coefir=NULL,

xselect.init=NULL,center=FALSE,trace=FALSE,numsample=50,df=4,

s=NULL,sh=NULL,q=NULL,qh=NULL,fk=NULL,iter=10,intercept=FALSE)Arguments

mstopnutwinboosttwintype

anintegergivingthenumberofboostingiterations.

asmallnumber(between0and1)definingthestepsizeorshrinkageparameter.alogicalvalue:TRUEfortwinboosting.

fortwinboost=TRUEonly.Forlearner=\"ls\",iftwintype=1,twinboostingwithweightsfrommagnitudeofcoefficientsinthefirstroundofboosting.Iftwintype=2,weightsarecorrelationsbetweenpredictedvaluesinthefirstroundofboostingandcurrentpredictedvalues.Forlearnersnotcomponentwiseleastsquares,twintype=2.

ifthreshold=\"adaptive\",theestimatedfunctionctrl$fkisupdatedineveryboostingstep.Otherwise,noupdateforctrl$fkinboostingsteps.Onlyusedifinrobustlossfunctionswiththedifferenceconvexloss.

threshold

bst_control

f.initcoefirxselect.initcentertracenumsampledfs,q

7

theestimatefromthefirstroundoftwinboosting.Onlyusefulwhentwinboost=TRUEandlearner=\"sm\"or\"tree\".

theestimatedcoefficientsfromthefirstroundoftwinboosting.Onlyusefulwhentwinboost=TRUEandlearner=\"ls\".

thevariableselectedfromthefirstroundoftwinboosting.Onlyusefulwhentwinboost=TRUE.

alogicalvalue:TRUEtocentercovariateswithmean.

alogicalvalueforprintoutofmoredetailsofinformationduringthefittingpro-cess.

numberofrandomsamplevariableselectedinthefirstroundoftwinboosting.Thisispotentiallyusefulinthefutureimplementation.degreeoffreedomusedinsmoothingsplines.

truncationparametersorfrequencyqofoutliersforrobustregressionandclas-sification.Ifsismissingbutqisavailable,smaybecomputedasthe1-qquantileofrobustlossvaluesusingconventionalsoftware.

thresholdvalueorfrequencyqhofoutliersforHuberregressionnfamily=\"huber\"orfamily=\"rhuberDC\".Forfamily=\"huber\",ifshisnotprovided,shisthenupdatedadaptivelywiththemedianofy-yhatwhereyhatistheestimatedyinthelastboostingiteration.Forfamily=\"rhuberDC\",ifshismissingbutqhisavailable,shmaybecomputedasthe1-qhquantileofrobustlossvaluesusingconventionalsoftware.

usedforrobustclassification.Afunctionestimateusedindifferenceofconvexalgorithm

numberofiterationindifferenceofconvexalgorithm

logicalvalue,ifTRUE,estimationofinterceptwithlinearpredictormodel

sh,qh

fkiterinterceptDetails

Objectstospecifyparametersoftheboostingalgorithmsimplementedinbst,viathectrlargu-ment.Thedefaultvalueofsis-1iffamily=\"thinge\",-log(3)iffamily=\"tbinom\",and4iffamily=\"binomd\"Value

Anobjectofclassbst_control,alist.Notefkmaybeupdatedforrobustboosting.SeeAlso

bst

8cv.bst

cv.bstCross-ValidationforBinaryHingeBoost

Description

Cross-validatedestimationoftheempiricalriskforboostingparameterselection.Usage

cv.bst(x,y,K=10,cost=0.5,family=c(\"gaussian\\"hinge\\"hinge2\\"binom\\"expo\

\"poisson\\"tgaussianDC\\"thingeDC\\"tbinomDC\\"binomdDC\\"texpoDC\\"tpoissonDC\"),learner=c(\"ls\\"sm\\"tree\"),ctrl=bst_control(),type=c(\"risk\\"misc\"),plot.it=TRUE,se=TRUE,n.cores=2,...)Arguments

xyKcostfamily

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbein{1,-1}forfamily=\"hinge\".K-foldcross-validation

pricetopayforfalsepositive,0acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.anobjectofclassbst_control.

cross-validationcriteria.Forfamily=\"hinge\",type=\"risk\"ishingeriskandtype=\"misc\"ismisclassificationerror.Forfamily=\"gaussian\",onlyempiri-calrisks.

alogicalvalue,toplottheestimatedrisksifTRUE.alogicalvalue,toplotwithstandarderrors.

ThenumberofCPUcorestouse.Thecross-validationloopwillattempttosenddifferentCVfoldsofftodifferentcores.additionalarguments.

learnerctrltype

plot.itse

n.cores...Value

objectwithresidmatmstopcv

cv.errorfamily...

empiricalrisksineachcross-validationatboostingiterationsboostingiterationstepsatwhichCVcurveshouldbecomputed.TheCVcurveateachvalueofmstopThestandarderroroftheCVcurve

family=\"hinge\"forhingelossandfamily=\"gaussian\"forsquarederrorloss.

cv.madaSeeAlso

bstExamples

9

##Notrun:

x<-matrix(rnorm(100*5),ncol=5)c<-2*x[,1]

p<-exp(c)/(exp(c)+exp(-c))y<-rbinom(100,1,p)y[y!=1]<--1

x<-as.data.frame(x)

cv.bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"lsype=\"risk\")cv.bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"lsype=\"misc\")dat.m<-bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")dat.m1<-cv.bst(x,y,ctrl=bst_control(twinboost=TRUE,coefir=coef(dat.m),xselect.init=dat.m$xselect,mstop=50),family=\"hinge\learner=\"ls\")##End(Notrun)

cv.madaCross-Validationforone-vs-allAdaBoostwithmulti-classproblem

Description

Cross-validatedestimationoftheempiricalmisclassificationerrorforboostingparameterselection.Usage

cv.mada(x,y,balance=FALSE,K=10,nu=0.1,mstop=200,interaction.depth=1,trace=FALSE,plot.it=TRUE,se=TRUE,...)Arguments

adatamatrixcontainingthevariablesinthemodel.

vectorofmulticlassresponses.ymustbeanintergervectorfrom1toCforCclassproblem.

balancelogicalvalue.IfTRUE,TheKpartswereroughlybalanced,ensuringthatthe

classesweredistributedproportionallyamongeachoftheKparts.

KK-foldcross-validationnuasmallnumber(between0and1)definingthestepsizeorshrinkageparameter.mstopnumberofboostingiteration.interaction.depth

usedingbmtospecifythedepthoftrees.

traceifTRUE,iterationresultsprintedout.plot.italogicalvalue,toplotthecross-validationerrorifTRUE.sealogicalvalue,toplotwith1standarddeviationcurves....additionalarguments.xy

10Value

objectwithresidmatfractioncvcv.error...SeeAlso

mada

empiricalrisksineachcross-validationatboostingiterationsabscissavaluesatwhichCVcurveshouldbecomputed.TheCVcurveateachvalueoffractionThestandarderroroftheCVcurve

cv.mbst

cv.mbstCross-ValidationforMulti-classBoosting

Description

Cross-validatedestimationoftheempiricalmulti-classlossforboostingparameterselection.Usage

cv.mbst(x,y,balance=FALSE,K=10,cost=NULL,family=c(\"hinge\

learner=c(\"tree\\"ls\\"sm\"),ctrl=bst_control(),

type=c(\"risk\plot.it=TRUE,se=TRUE,n.cores=2,...)Arguments

xybalanceKcostfamilylearnerctrltypeplot.it

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbeintegersfrom1toCforCclassproblem.logicalvalue.IfTRUE,TheKpartswereroughlybalanced,ensuringthattheclassesweredistributedproportionallyamongeachoftheKparts.K-foldcross-validation

pricetopayforfalsepositive,0acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.anobjectofclassbst_control.

forfamily=\"hinge\",type=\"risk\"ishingerisk.Forfamily=\"mhingedcf\",type=\"risk\"

alogicalvalue,toplottheestimatedrisksifTRUE.

cv.mhingebst

sen.cores...Value

objectwithresidmatfractioncvcv.error...SeeAlso

mbst

empiricalrisksineachcross-validationatboostingiterationsabscissavaluesatwhichCVcurveshouldbecomputed.TheCVcurveateachvalueoffractionThestandarderroroftheCVcurvealogicalvalue,toplotwithstandarderrors.

11

ThenumberofCPUcorestouse.Thecross-validationloopwillattempttosenddifferentCVfoldsofftodifferentcores.additionalarguments.

cv.mhingebstCross-ValidationforMulti-classHingeBoosting

Description

Cross-validatedestimationoftheempiricalmulti-classhingelossforboostingparameterselection.Usage

cv.mhingebst(x,y,balance=FALSE,K=10,cost=NULL,family=\"hinge\learner=c(\"tree\\"ls\\"sm\"),ctrl=bst_control(),

type=c(\"risk\plot.it=TRUE,se=TRUE,n.cores=2,...)Arguments

xybalanceKcostfamilylearner

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbeintegersfrom1toCforCclassproblem.logicalvalue.IfTRUE,TheKpartswereroughlybalanced,ensuringthattheclassesweredistributedproportionallyamongeachoftheKparts.K-foldcross-validation

pricetopayforfalsepositive,0acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.

12

ctrltypeplot.itsen.cores...Value

objectwithresidmatfractioncvcv.error...SeeAlso

mhingebst

empiricalrisksineachcross-validationatboostingiterationsabscissavaluesatwhichCVcurveshouldbecomputed.TheCVcurveateachvalueoffractionThestandarderroroftheCVcurveanobjectofclassbst_control.

forfamily=\"hinge\",type=\"risk\"ishingerisk.alogicalvalue,toplottheestimatedrisksifTRUE.alogicalvalue,toplotwithstandarderrors.

cv.mhingeova

ThenumberofCPUcorestouse.Thecross-validationloopwillattempttosenddifferentCVfoldsofftodifferentcores.additionalarguments.

cv.mhingeovaCross-Validationforone-vs-allHingeBoostwithmulti-classproblem

Description

Cross-validatedestimationoftheempiricalmisclassificationerrorforboostingparameterselection.Usage

cv.mhingeova(x,y,balance=FALSE,K=10,cost=NULL,nu=0.1,

learner=c(\"tree\\"ls\\"sm\"),maxdepth=1,m1=200,twinboost=FALSE,m2=200,trace=FALSE,plot.it=TRUE,se=TRUE,...)Arguments

xybalanceKcost

adataframecontainingthevariablesinthemodel.

vectorofmulticlassresponses.ymustbeanintergervectorfrom1toCforCclassproblem.

logicalvalue.IfTRUE,TheKpartswereroughlybalanced,ensuringthattheclassesweredistributedproportionallyamongeachoftheKparts.K-foldcross-validation

pricetopayforfalsepositive,0ex1data

nulearnermaxdepthm1twinboostm2traceplot.itse...Value

objectwithresidmatfractioncvcv.error...Note

ThefunctionsforbalancedcrossvalidationwerefromRpackagepmar.SeeAlso

mhingeova

empiricalrisksineachcross-validationatboostingiterationsabscissavaluesatwhichCVcurveshouldbecomputed.TheCVcurveateachvalueoffractionThestandarderroroftheCVcurve

13

asmallnumber(between0and1)definingthestepsizeorshrinkageparameter.acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.treedepthusedinlearner=treenumberofboostingiterationlogical:twinboosting?

numberoftwinboostingiterationifTRUE,iterationresultsprintedout

alogicalvalue,toplottheestimatedrisksifTRUE.alogicalvalue,toplotwithstandarderrors.additionalarguments.

ex1dataGeneratingThree-classDatawith50Predictors

Description

Randomlygeneratedataforathree-classmodel.Usage

ex1data(n.data)Arguments

n.data

numberofdatasamples.

14Details

ThedataisgeneratedbasedonExample1describedinWang(2011).Value

mada

Alistwithn.databy50predictormatrixx,three-classresponseyandconditionalprobabilitiesp.Author(s)

ZhuWangReferences

ZhuWang(2012),Multi-classHingeBoost:MethodandApplicationtotheClassificationofCancerTypesUsingGeneExpressionData.MethodsofInformationinMedicine,51(2),162–7.Examples

##Notrun:

dat<-ex1data(200)

mhingebst(x=dat$x,y=dat$y)##End(Notrun)

lossInternalFunction

Description

InternalFunction

madaMulti-classAdaBoost

Description

One-vs-allmulti-classAdaBoostUsage

mada(xtr,ytr,xte=NULL,yte=NULL,mstop=50,nu=0.1,interaction.depth=1)

mbstArguments

xtrytrxteytemstopnu

trainingdatamatrixcontainingthepredictorvariablesinthemodel.

15

trainingvectorofresponses.ytrmustbeintegersfrom1toC,forCclassproblem.

testdatamatrixcontainingthepredictorvariablesinthemodel.

testvectorofresponses.ytemustbeintegersfrom1toC,forCclassproblem.numberofboostingiteration.

asmallnumber(between0and1)definingthestepsizeorshrinkageparameter.

interaction.depth

usedingbmtospecifythedepthoftrees.Details

ForaC-classproblem(C>2),eachclassisseparatelycomparedagainstallotherclasseswithAdaBoost,andCfunctionsareestimatedtorepresentconfidenceforeachclass.Theclassificationruleistoassigntheclasswiththelargestestimate.Value

Alistcontainsvariableselectedxselectandtrainingandtestingerrorerr.tr,err.te.Author(s)

ZhuWangSeeAlso

cv.madaforcross-validatedstoppingiteration.Examples

data(iris)

mada(xtr=iris[,-5],ytr=iris[,5])

mbstBoostingforMulti-Classification

Description

Gradientboostingforoptimizingmulti-classhingeorrobusthingelosslossfunctionswithcompo-nentwiselinear,smoothingsplines,treemodelsasbaselearners.

16Usage

mbst(x,y,cost=NULL,family=c(\"hinge\\"hinge2\\"thingeDC\"),ctrl=bst_control(),control.tree=list(fixed.depth=TRUE,

n.term.node=6,maxdepth=1),learner=c(\"ls\\"sm\\"tree\"))##S3methodforclass󰁅mbst󰁅print(x,...)

##S3methodforclass󰁅mbst󰁅

predict(object,newdata=NULL,newy=NULL,mstop=NULL,type=c(\"response\\"class\\"loss\\"error\"),...)##S3methodforclass󰁅mbst󰁅

fpartial(object,mstop=NULL,newdata=NULL)Arguments

xycostfamily

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbe1,2,...,kforakclassificationproblem

mbst

pricetopayforfalsepositive,0anobjectofclassbst_control.controlparametersofrpart.

acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.

inpredictacharacterindicatingwhethertheresponse,allresponsesacrosstheboostingiterations,classes,lossorclassificationerrorsshouldbepredictedincaseofhingeproblems.inplot,plotofboostingiterationor$L_1$norm.classofmbst.

newdataforpredictionwiththesamenumberofcolumnsasx.newresponse.

boostingiterationforprediction.additionalarguments.

ctrlcontrol.treelearnertype

objectnewdatanewymstop...Details

Alinearornonlinearclassifierisfittedusingaboostingalgorithmformulti-classresponses.Thisfunctionisdifferentfrommhingebstonhowtodealwithzero-to-sumeconstraintandlossfunc-tions.Iffamily=\"hinge\",thelossfunctionisthesameasinmhingebstbuttheboostingalgorithmisdifferent.Iffamily=\"hinge2\",thelossfunctionisdifferentfromfamily=\"hinge\":theresponseisnotrecodedasinWang(2012).Inthiscase,thelossfunctionis

󰀁

I(yi=j)(fj+1)+.family=\"thingeDC\"forrobustlossfunctionusedintheDCBalgorithm.

mbstValue

17

Anobjectofclassmbstwithprint,coef,plotandpredictmethodsareavailableforlinearmodels.Fornonlinearmodels,methodsprintandpredictareavailable.x,y,cost,family,learner,control.tree,maxdepth

Theseareinputvariablesandparametersctrlyhatensml.fitensemblexselectcoefAuthor(s)

ZhuWangReferences

ZhuWang(2011),HingeBoost:ROC-BasedBoostforClassificationandVariableSelection.TheInternationalJournalofBiostatistics,7(1),Article13.

ZhuWang(2012),Multi-classHingeBoost:MethodandApplicationtotheClassificationofCancerTypesUsingGeneExpressionData.MethodsofInformationinMedicine,51(2),162–7.SeeAlso

cv.mbstforcross-validatedstoppingiteration.Furthermoreseebst_controlExamples

x<-matrix(rnorm(100*5),ncol=5)

c<-quantile(x[,1],prob=c(0.33,0.67))y<-rep(1,100)

y[x[,1]>c[1]&x[,1]c[2]]<-3x<-as.data.frame(x)

dat.m<-mbst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")predict(dat.m)

dat.m1<-mbst(x,y,ctrl=bst_control(twinboost=TRUE,

f.init=predict(dat.m),xselect.init=dat.m$xselect,mstop=50))

dat.m2<-rmbst(x,y,ctrl=bst_control(mstop=50,s=1,trace=TRUE),rfamily=\"thinge\learner=\"ls\")predict(dat.m2)

theinputctrlwithpossibleupdatedfkiffamily=\"thingeDC\"predictedfunctionestimates

alistoflengthmstop.Eachelementisafittedmodeltothepsedoresiduals,definedasnegativegradientoflossfunctionatthecurrentestimatedfunctionthelastelementofens

avectoroflengthmstop.Eachelementisthevariableselectedineachboostingstepwhenapplicableselectedvariablesinmstop

estimatedcoefficientsineachiteration.Usedinternallyonly

18mhingebst

mhingebstBoostingforMulti-classClassification

Description

Gradientboostingforoptimizingmulti-classhingelossfunctionswithcomponentwiselinearleastsquares,smoothingsplinesandtreesasbaselearners.Usage

mhingebst(x,y,cost=NULL,family=c(\"hinge\"),ctrl=bst_control(),control.tree=list(fixed.depth=TRUE,n.term.node=6,maxdepth=1),learner=c(\"ls\\"sm\\"tree\"))##S3methodforclass󰁅mhingebst󰁅print(x,...)

##S3methodforclass󰁅mhingebst󰁅

predict(object,newdata=NULL,newy=NULL,mstop=NULL,type=c(\"response\\"class\\"loss\\"error\"),...)##S3methodforclass󰁅mhingebst󰁅

fpartial(object,mstop=NULL,newdata=NULL)Arguments

xycostfamilyctrl

control.treelearnertypeobjectnewdatanewymstop...Details

Alinearornonlinearclassifierisfittedusingaboostingalgorithmbasedoncomponent-wisebaselearnersformulti-classresponses.

adataframecontainingthevariablesinthemodel.

vectorofresponses.ymustbein{1,-1}forfamily=\"hinge\".equalcostsfornowandunequalcostswillbeimplementedinthefuture.family=\"hinge\"formulti-classhingeloss.anobjectofclassbst_control.controlparametersofrpart.

acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.

inpredictacharacterindicatingwhethertheresponse,classes,lossorclassifi-cationerrorsshouldbepredictedincaseofhingeclassofmhingebst.

newdataforpredictionwiththesamenumberofcolumnsasx.newresponse.

boostingiterationforprediction.additionalarguments.

mhingeovaValue

19

Anobjectofclassmhingebstwithprintandpredictmethodsbeingavailableforfittedmodels.Author(s)

ZhuWangReferences

ZhuWang(2011),HingeBoost:ROC-BasedBoostforClassificationandVariableSelection.TheInternationalJournalofBiostatistics,7(1),Article13.

ZhuWang(2012),Multi-classHingeBoost:MethodandApplicationtotheClassificationofCancerTypesUsingGeneExpressionData.MethodsofInformationinMedicine,51(2),162–7.SeeAlso

cv.mhingebstforcross-validatedstoppingiteration.Furthermoreseebst_controlExamples

##Notrun:

dat<-ex1data(100)

res<-mhingebst(x=dat$x,y=dat$y)##End(Notrun)

mhingeovaMulti-classHingeBoost

Description

Multi-classalgorithmwithone-vs-allbinaryHingeBoostwhichoptimizesthehingelossfunctionswithcomponentwiselinear,smoothingsplines,treemodelsasbaselearners.Usage

mhingeova(xtr,ytr,xte=NULL,yte=NULL,cost=NULL,nu=0.1,

learner=c(\"tree\\"ls\\"sm\"),maxdepth=1,m1=200,twinboost=FALSE,m2=200)##S3methodforclass󰁅mhingeova󰁅print(x,...)

20Arguments

xtrytrxteytecostnulearnermaxdepthm1twinboostm2x...Details

trainingdatacontainingthepredictorvariables.

vectoroftrainingdataresponses.ytrmustbein{1,2,...,k}.testdatacontainingthepredictorvariables.

vectoroftestdataresponses.ytemustbein{1,2,...,k}.

mhingeova

defaultisNULLforequalcost;otherwiseanumericvectorindicatingpricetopayforfalsepositive,0asmallnumber(between0and1)definingthestepsizeorshrinkageparameter.acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.treedepthusedinlearner=treenumberofboostingiterationlogical:twinboosting?

numberoftwinboostingiterationclassofmhingeova.additionalarguments.

ForaC-classproblem(C>2),eachclassisseparatelycomparedagainstallotherclasseswithHingeBoost,andCfunctionsareestimatedtorepresentconfidenceforeachclass.Theclassificationruleistoassigntheclasswiththelargestestimate.Alinearornonlinearmulti-classHingeBoostclassifierisfittedusingaboostingalgorithmbasedonone-againstcomponent-wisebaselearnersfor+1/-1responses,withpossiblecost-sensitivehingelossfunction.Value

Anobjectofclassmhingeovawithprintmethodbeingavailable.Author(s)

ZhuWangReferences

ZhuWang(2011),HingeBoost:ROC-BasedBoostforClassificationandVariableSelection.TheInternationalJournalofBiostatistics,7(1),Article13.

ZhuWang(2012),Multi-classHingeBoost:MethodandApplicationtotheClassificationofCancerTypesUsingGeneExpressionData.MethodsofInformationinMedicine,51(2),162–7.SeeAlso

bstforHingeBoostbinaryclassification.Furthermoreseecv.bstforstoppingiterationselectionbycross-validation,andbst_controlforcontrolparameters.

nselExamples

##Notrun:

dat1<-read.table(\"http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ann-train.data\")

dat2<-read.table(\"http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ann-test.data\")

res<-mhingeova(xtr=dat1[,-22],ytr=dat1[,22],xte=dat2[,-22],yte=dat2[,22],cost=c(2/3,0.5,0.5),nu=0.5,learner=\"ls\m1=100,K=5,cv1=FALSE,twinboost=TRUE,m2=200,cv2=FALSE)

res<-mhingeova(xtr=dat1[,-22],ytr=dat1[,22],xte=dat2[,-22],yte=dat2[,22],cost=c(2/3,0.5,0.5),nu=0.5,learner=\"ls\m1=100,K=5,cv1=FALSE,twinboost=TRUE,m2=200,cv2=TRUE)##End(Notrun)

21

nselFindNumberofVariablesInMulti-classBoostingIterations

Description

FindNumberofVariablesInMulti-classBoostingIterationsUsage

nsel(object,mstop)Arguments

objectmstopValue

avectoroflengthmstopindicatingnumberofvariablesselectedineachboostingiterationAuthor(s)

ZhuWang

anobjectofmhingebst,mbst,orrmbstboostingiterationnumber

22rbst

rbstRobustBoostingforTruncatedLossFunctions

Description

Gradientboostingforoptimizingrobustlossfunctionswithcomponentwiselinear,smoothingsplines,treemodelsasbaselearners.Usage

rbst(x,y,cost=0.5,rfamily=c(\"tgaussian\\"thuber\\"tbinom\\"binomd\\"texpo\\"tpoisson\"),ctrl=bst_control(),control.tree=list(maxdepth=1),learner=c(\"ls\Arguments

xycostrfamily

adataframecontainingthevariablesinthemodel.vectorofresponses.ymustbein{1,-1}.

pricetopayforfalsepositive,0acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.convergencycritera

ctrl

control.treelearnerdelDetails

Alinearornonlinearclassifierisfittedusingrobustboostingalgorithm.Value

Anobjectofclassbstwithprint,coef,plotandpredictmethodsareavailableforlinearmodels.Fornonlinearmodels,methodsprintandpredictareavailable.x,y,cost,rfamily,learner,control.tree,maxdepth

Theseareinputvariablesandparametersctrlyhatensml.fit

predictedfunctionestimates

alistoflengthmstop.Eachelementisafittedmodeltothepsedoresiduals,definedasnegativegradientoflossfunctionatthecurrentestimatedfunctionthelastelementofens

theinputctrlwithpossibleupdatedfkiffamily=\"tgaussian\\"thingeDC\\"binomdD

rbstpath

ensemblexselectcoefAuthor(s)

ZhuWangSeeAlso

cv.bstforcross-validatedstoppingiteration.Furthermoreseebst_controlExamples

x<-matrix(rnorm(100*5),ncol=5)c<-2*x[,1]

p<-exp(c)/(exp(c)+exp(-c))y<-rbinom(100,1,p)y[y!=1]<--1

y[1:10]<--y[1:10]x<-as.data.frame(x)

dat.m<-bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")predict(dat.m)

dat.m1<-bst(x,y,ctrl=bst_control(twinboost=TRUE,

coefir=coef(dat.m),xselect.init=dat.m$xselect,mstop=50))

dat.m2<-rbst(x,y,ctrl=bst_control(mstop=50,s=0,trace=TRUE),rfamily=\"thinge\learner=\"ls\")predict(dat.m2)

23

avectoroflengthmstop.Eachelementisthevariableselectedineachboostingstepwhenapplicableselectedvariablesinmstopestimatedcoefficientsinmstop

rbstpathRobustBoostingPathforTruncatedLossFunctions

Description

Gradientboostingpathforoptimizingrobustlossfunctionswithcomponentwiselinear,smoothingsplines,treemodelsasbaselearners.Usage

rbstpath(x,y,rmstop=seq(40,400,by=20),ctrl=bst_control(),del=1e-16,...)Arguments

xyrmstop

adataframecontainingthevariablesinthemodel.vectorofresponses.ymustbein{1,-1}.vectorofboostingiterations

24

ctrldel...Details

anobjectofclassbst_control.convergencycriteraargumentspassedtorbst

rmbst

Thisfunctioninvokesrbstwithmstopbeingeachelementofvectorrmstop.Itcanprovidedif-ferentpaths.Thusrmstopservesasanotherhyper-parameter.However,themostimportanthyper-parameteristhelosstruncationpoint.Value

Alengthrmstopvectoroflistswitheachelementbeinganobjectofclassrbst.Author(s)

ZhuWangSeeAlso

rbstExamples

x<-matrix(rnorm(100*5),ncol=5)c<-2*x[,1]

p<-exp(c)/(exp(c)+exp(-c))y<-rbinom(100,1,p)y[y!=1]<--1

y[1:10]<--y[1:10]x<-as.data.frame(x)

dat.m<-bst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")predict(dat.m)

dat.m1<-bst(x,y,ctrl=bst_control(twinboost=TRUE,

coefir=coef(dat.m),xselect.init=dat.m$xselect,mstop=50))

dat.m2<-rbst(x,y,ctrl=bst_control(mstop=50,s=0,trace=TRUE),rfamily=\"thinge\learner=\"ls\")predict(dat.m2)

rmstop<-seq(10,40,by=10)

dat.m3<-rbstpath(x,y,rmstop,rfamily=\"thinge\learner=\"ls\")

rmbstRobustBoostingforMulti-classTruncatedLossFunctions

Description

Gradientboostingforoptimizingrobustlossfunctionswithcomponentwiselinear,smoothingsplines,treemodelsasbaselearners.

rmbstUsage

25

rmbst(x,y,cost=0.5,rfamily=\"thingehreshold=c(\"adaptive\\"standard\"),

ctrl=bst_control(),control.tree=list(maxdepth=1),learner=c(\"ls\Arguments

xycostrfamilythresholdctrl

control.treelearnerdelDetails

Alinearornonlinearclassifierisfittedusingrobustboostingalgorithm.Value

Anobjectofclassbstwithprint,coef,plotandpredictmethodsareavailableforlinearmodels.Fornonlinearmodels,methodsprintandpredictareavailable.x,y,cost,rfamily,learner,control.tree,maxdepth

Theseareinputvariablesandparametersctrlyhatensml.fitensemblexselectcoefAuthor(s)

ZhuWangSeeAlso

cv.mbstforcross-validatedstoppingiteration.Furthermoreseebst_control

theinputctrlwithpossibleupdatedfkiftype=\"adaptive\"predictedfunctionestimates

alistoflengthmstop.Eachelementisafittedmodeltothepsedoresiduals,definedasnegativegradientoflossfunctionatthecurrentestimatedfunctionthelastelementofens

avectoroflengthmstop.Eachelementisthevariableselectedineachboostingstepwhenapplicableselectedvariablesinmstopestimatedcoefficientsinmstop

adataframecontainingthevariablesinthemodel.vectorofresponses.ymustbein{1,2,...,k}.

pricetopayforfalsepositive,0ifthreshold=\"adaptive\",theestimatedfunctionisupdatedineveryboostingstepwheninvokingrbstfunction.Otherwise,noupdateinboostingsteps.anobjectofclassbst_control.controlparametersofrpart.

acharacterspecifyingthecomponent-wisebaselearnertobeused:lslinearmodels,smsmoothingsplines,treeregressiontrees.convergencycritera

26Examples

rmbst

x<-matrix(rnorm(100*5),ncol=5)

c<-quantile(x[,1],prob=c(0.33,0.67))y<-rep(1,100)

y[x[,1]>c[1]&x[,1]c[2]]<-3x<-as.data.frame(x)x<-as.data.frame(x)

dat.m<-mbst(x,y,ctrl=bst_control(mstop=50),family=\"hinge\learner=\"ls\")predict(dat.m)

dat.m1<-mbst(x,y,ctrl=bst_control(twinboost=TRUE,

f.init=predict(dat.m),xselect.init=dat.m$xselect,mstop=50))

dat.m2<-rmbst(x,y,ctrl=bst_control(mstop=50,s=1,trace=TRUE),rfamily=\"thinge\learner=\"ls\")predict(dat.m2)

Index

∗Topicclassification

bstex1data,2

mada,13mbst,14mhingebst,15

mhingeova,18rbst,19rbstpath,22rmbst,24,23∗Topicmodels

bst.sel,5∗Topicregression

bst.sel,5

balanced.foldsbst(lossbst-package,2,3,5,7,9,20),14bst.sel,2bst_control,5

,3,4,6,8,10,12,16–20,22–25coefcoef.bst,4,17cv.bst(,bst22,),252cv.mada,4,5,8,20,23cv.mbst,cv.mhingebst,910,15,17,25cv.mhingeova,11,19cvfolds(loss,),1214error.barsex1data,13

(loss),14fpartial.bstfpartial.mbst(bstfpartial.mhingebst(mbst),2)(,mhingebst15

),18gausslossgaussngra((lossloss)),,1414hingeloss(loss),14

hingengra(loss),14loss,14

madambst,mbst_fit,1011,,14

15,mhingebst(loss16,),2114

mhingebst_fit,12,18mhingeova,13,19(loss,18,21,20),14ngradientnsel,21

(loss),14permute.rowsplot(plot.bst,3,4,17,22loss,25),14plotCVbst(bst),2predictpredict.bst,3,(4loss,),14

predict.mbst(17bst,19,22,25predict.mhingebst(mbst),2)printprint.bst,4,17,19(,mhingebst15

),18print.mbst(bst,)20,22,25print.mhingebst(mbst,2)print.mhingeova(,(mhingebst15

mhingeova)),,1819rbstrbstpath,22,24rmbst,21,,2324

27

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务