第32卷第1期 湖州师范学院学报 Vo1.32 No.1 2010年2月 Journal of Huzhou Teachers College Feb.,2O10 An Inequality for the Gamma Function YUAN Yi—qun.ZHANG Xiao (Faculty of Science,Huzhou Teachers College,Huzhou 313000。China) Abstract:The gamma function has been investigated intensively by many authors in recent years.This paper discus ses the monotonicity of the function g(z) Er(z+1)]{ by using a double inequality of the derivative of the dig √-z alTlma function,and obtains an inequality for some ratio of the gamma functions,which improves Zhang,Wang and Chu’S result in a special case. Key words:gamma function;monotonicity;inequality CLC number:O1 74.6 Document code:A Article ID:1009—1734(2010)01—0037—03 MSC 2000:33C05 0 Introduction 篱 For real and positive values of z the classical gamma function is usually defined as r( )===I e 。广 dt (1) J o The psi or digamma function,the logarithmic derivative of the gamma function,can be expressed as[ , 一 -V+』 (2) where),一0.57721566490…is the Euler—Maseheroni constant. The gamma function has been investigated intensively by many authors in recent past years.Over the past half century many authors have been obtained numerous interesting inequalities for these impor— tant functionsE ~ . In[82,Zhang etc.obtained the following result: Theorem A The function 厂( )一 [-p(x+ +1)/P(y+1)] is strictly decreasing in x>0 for fixed ≥ g( )一 _『 is strictly increasing in x>O for fixed 三三三0.In particular,for all z∈(O,oo)and y∈E0,∞),we have z+ +1/,[厂(z+ +1)/F(y+1)]i/, 压王五j + +2、[I1(z+.y+2)/F( +1)] 、 Iz+ +2 (3) * Received date:2009—10—15 Foundation item:The Research is Partly Supported by Department of Education of Zhejiang Province(Y200908671) and the National Level Characteristic Specialty:Mathematics and Applied Mathematics. Biography:YUAN Yi—qun,Undergraduate student of grade 2005,Faculty of Science,Huzhou Teachers College,Re search Interests:Function theory. 38 湖州师范学院学报 第32卷 If we set y=0,then the right inequality in(3)can be as follows B y d [r(z+2)]南 < r C e (4) In this paper,we shall study the monotonicity of a O function involving the gamma function and im— C Ⅱ prove the inequahty(4). p U a o 1 Main Results n a n d U The foil。wing double inequalities of the sec。nd logarithmic derivative。f the gamma functioS n bel。ng n g to M.Merkle: , g e Lemma 1 For xff(O,oo), ( q 1 + 1+ < (.z)< 丰 + 1+ } . _蚕( 一 睡 s 5) The0rem 2 There exists a c。nstant n∈(1,2)such that the functi。n g(z): 菩 i( z s str) ic, tly ~Z increasing in(。,+∞).In particular,for ∈(O,∞),we hav。 ) h 一一 兰± / 1—2 [r(z+2)] 、 (6) Proof Taking the logarithm yields I。g[g(z)]:==11。gP(z+1)一 1 l。z g . (7) Differentiating with respect to.z,(7)giv 1。 (z 1)+ (z+1)一号三g (z) and (8) g (z)>z 1 1 + 而1]一÷一 z +5 +7z +z一4 h ( ) 2(z+2) (z+1) 一h2(z)’ where hi( )一oZ" +5x。+7x + 一4 and h2(z)一2(z+1)。(z+2)。.It is c1ear that the function 1(z)is t tly n。 ea mg in(O'+。。)・Since h1(O)<0 and h1(1)>O,there is an unique constant z。∈(O,1) such as hi(x0)一0・Thus we can easily obtain g 1(z)>0 for x>x。and the function g1(z)is strictly in— creasmg in( 。'+oo)・By simple computation we have g1(1)<O and g1(2)>O,so there is an uniaue consrant aft(1,2)such as g1(n)一0.Therefore g( )is strictly increasing in(口,+o。). Remark We can easily obtain the function g(z)is strictly decreasing in( 。,以)from the proof.We can also cons der the monotonicity of the function g(z)in other intervals by(8)and the right inequalitv Since √ |z ,}<√ z十1 for 二>0,the inequality(6)improves(4)for z>口,here以is the constant in theorem 2. 第2期 YUAN Yi—qun,et al:An Inequality for the Gamma Function 39 Refefences: E 1]WHITTAKER E T,WATSON G N.A course ofmodern analysis[M].4th ed,Cambridge University Press,1958. [2]谭琳.函数札记[M].杭州:浙江大学出版社,1997:11~39. [3]ALZER H.Sharp inequalities for digamma and polygamma function[J].Forum Math,2004,16:181~221. [4]GUO B N,QI F.Inequalities and monotonicity for the ratio of gamma functions[J].Taiwanese J Math,2003,7(2): 239~247. E 5]ANDERSON G D,QIU S L.A monotonicity property of the gamma function[J].胁AmerMath Soc,1997,125:3355 ~3362. [6]MERKLE M.Gurland’s ratio for the gamma function口].Comp Math Appl,2005,49:389 ̄406. [7]QIU S L,VUORINEN M.Some properties of the gamma and psi functions,with applications[J].Math Comp,2005, 74(250):723~742. [8]ZHANG X H,WANG G D,CHU Y M.Monotonicity and inequalities for the gamma function[J].Far East J 如 Sci。2006.21(1):33~39. 关于伽马函数的一个不等式 袁亦群,张孝惠 (湖州师范学院数学系,浙江湖州313000) 摘 要:最近几年伽马函数的分析不等式研究在国际上相当广泛.利用双伽马函数的导数N--+ ̄向不等式,通过研究函 数g( )一 的单调性,从而得到了一个关于伽马函数比的不等式.该不等式在某种特殊情形下改进了张、王和 褚的一个不等式. 中图分类号:O174.6 关键词:伽马函数;单调性 不等式 MSC 2000 1 33CO5