YannisKalfoglouyannisk@dai.ed.ac.uk
DavidRobertsondr@dai.ed.ac.uk
SchoolofArtificialIntelligence,
InstituteforRepresentationandReasoning,
DivisionofInformatics,UniversityofEdinburgh,
80SouthBridge,Edinburgh,EH11HN,Scotland
Abstract
Weexploretheuseofontologicalconstraintsinanewway:deployingtheminasoftwaresystem’sformalevaluation.Wepresentaformalismforontologicalconstraintsandelaborateonametainterpretationtechniqueinthefieldofontologies.Ontologicalconstraintsoftenneedenhancementstocaptureapplication-specificdiscrepancies.Weproposeaneditingsystemthatprovidesguidanceinbuildingthoseconstraintsandweexplainhowthishelpsustodetectconceptualerrorsthatre-flectamisuseofontologicalconstructs.Wede-scribeamultilayerarchitectureforperformingsuchchecksandwedemonstrateitsusageviaanexamplecase.Wespeculateonthepotentialim-pactoftheapproachforthesystem’sdesignpro-cess.
1Introduction
IntheAIontologicalcommunitymostworkisfocusedonthetwoissuesthatontologiesclaimtodeliver:know-ledgesharingandreuse.Intherecentyears,developmentsinthefieldhavebeenfastandnewwaysofdeveloping,browsingandeditingontologieshaveemerged.However,theobserveddearthofapplicationsreportedin[Usc98]isahardrealityandontologicalengineersareworkinghard
Aswedescribelaterinthepaperexistingontologicalax-iomsneedtobeenhancedtocapturedomain-specificdis-crepancies.Thispracticeisoftenencounteredwhenwemovefromtoplevelontologiesdowntodomainspecificontologieswheretheorderofspecificityincreases.
Thispaperisorganisedasfollows:insection2wepresentaformalisationforontologicalconstraintsalongwithametainterpretationtechniquethatmakesitpossibletocheckwhethergoalsthatsucceedintheproofsviol-atethoseconstraints.Wepresentaflexiblemultilayerap-proachtofacilitatethissortofchecksandinsection3weelaborateontoolsthathelpustoconstructontologicalcon-straints.Wediscussbenefitsoftheapproachanddemon-strateabriefuseofthemultilayerarchitectureinsections4and5respectively.Insection6wegivepointerstorelatedwork.
2Formalisingontologicalconstraints
Inthissectionwepresentaformalisationforontologicalconstraintsandhowwechosetorepresenttheminaspe-cificerrorformat.Insection2.1weelaborateonagenericinferencemechanismwhichismadeexplicitthroughmeta-interpretationandwepresentanerrorcheckingmechanismtailoredtotheparticularontologicalconstraints.Insec-tion2.2weshowhowwerealisethistheoreticalmodelinamultilayerapproachthatcombinestheinferencemechan-ismalongwiththeerrorcheckingandgivesusadditionaladvantageswhichwediscussinthesequel.Theontologicalconstraintsadoptthefollowingnotation:
whereisaunitgoalandareallvari-ablesin,andisaconditioncomposedoflogicalconnectives()and/orunitgoals.Theconditionmustbecomposedofvalidontologicalconstructsanditmustbetruewhentheunitgoalistrue.
Weareinterestedinproofsoverexistentiallyquantifiedgoals,sotheformulaistransformedintoanormalformwherethe‘’operatorbelowconnectstheoriginal(left)tothetransformedversion(right):
Wethenidentifythepredicatederivedfromthelefthandsideoftheoriginalimplicationofformulaandlosetheexistentialquantifierandouternegationsincetheseexpres-sionswillbeusedtotestforerrorsongoalsintheproof.Hence,therightpartofformulawillbe:
(D)Figure1:TheMultilayerarchitecture.Therightpartshowstheapproachasawhole,whereastheleftpartisamagnific-ationofalayer.
architectureatfigure1whereweincludeattheleftpartamagnificationofonelayer.Adescriptionofalayerfollows:Specificationconstructionstartsbyadoptingthesyntaxandsemanticsoftheontology.WeuseHornClausesasaspecificationconstructionformalismwiththenormalPro-logexecutionmodel.Thisallowsustointerpretthespe-cificationdeclarativelybasedontheunderpinningcompu-tationallogicwhiletheproceduralinterpretationmakesitpossibletocheckthecorrectnessofthespecificationauto-maticallybyusingthemeta-interpretermechanism.
Theontologicalconstructswillnotbetheonlypartsofthespecification.Infact,itisnormallyimpracticaltocon-structanexecutablespecificationbyusingonlytheonto-logy’sconstructs.Otherconstructsarenormallyaddedtocustomisethespecificationfortheparticulardomainofap-plication.Thesewillnotbenefitfromthemeta-interpretererrorcheckingmechanismbutcanbecheckedinthenor-malway.
Ontologicalaxiomsareusedtoverifythecorrectuseofontologicalconstructsinthespecification.Theirroleistoensurethatthecorrectinterpretationsofontologicalconstructswillbegiven.Thiscanbedoneautomatic-allywiththemeta-interpreterandaswedescribedinsec-tion1.1therecanbeextra,applicationspecificontologicalconstraintsthatareconstructedwiththeuseofsupportingtools,liketheeditorwedescribeinsection3.
Thespecificationalongwiththeontologicalconstraintsisinterpretedbythemeta-interpreter.Wheneverastate-mentinthespecificationdoesnotsatisfytheontologicalconstraintsanerrorisreported.
Therightpartoffigure1showsourapproachinamul-tilayerperspective.Thisallowsustocheckthecorrect-nessofontologicalconstraintsthemselves.Whethertheyareprovidedbyontologicalengineersintheformofon-tologicalaxiomsorareapplicationspecificerrorcondi-tionstheymaybeerroneouslydefined.Thiscouldleadtoanerroneouserrordiagnosiswithpernicioussideeffects.However,ourproofsthaterrorexistaredoneusingthesamemechanismasforspecifications,makingitpossibletodefineconstraintsonerrorontologies.Theadvantageofthisapproachisthatwecanusethesamecoremechanism,themeta-interpreterprogram,tocheckspecificationsandtheirontologicalconstraintssimultaneously.Ultimately,thislayercheckingcanbeextendedtoanarbitrarynum-beroflayersupwards,untilnomorelayerscanbedefined.Abriefexampleofthemultilayerapproachisgiveninsec-tion5,whileherewedrawtheattentionofthereadertotheformatweadopttorepresentspecificationstatementsinanalogywiththeclause/2builtinpredicatedescribedinsection2.1.Theonlydifferenceisthatweaddonemoreargumenttotheclausetoindicatetheindexofalayer.Theformatisasfollows:
specification(Index,(AB))
Thesameadditionhasbeenmadetotheerrordescriptionformatgiveninsection1.1.
3Buildingontologicalconstraints
Theexistingsetofontologicalconstraintscanbeaugmen-tedbyaddingextraconstraints.Asimilarapproachwas
Y.Kalfoglou,D.Robertson5-4
introducedin[UCH98],wheretheauthorsreportthattheyhadtoaddextraontologicalaxiomsintheirspecifica-tionformulationinordertoprovesomeconceptsthatweretreatedasprimitivesintheunderpinningontology.Wehaveelaboratefurtheronthenotionofdefiningextra,applica-tionspecificontologicalconstraintswhichresultsinacus-tomisedaxiomatisation.Webelievethattheusershouldbeprovidedwithsupportinutilisingbothkindsofconstraints,existingandnewonestailoredtotheparticularapplication.Whateverthechoice,theconstructsusedintheconstraintsshouldconformtotheontologyvocabularyandbeconsist-entwiththeexistingconstraints.Howevertheapplicationspecificconstraintscanuseextraconstructswhicharenotpartoftheunderpinningontology.
Withthisaiminmindwehavebuildtwoeditingtoolsthatfacilitatetheconstructionofontologicalconstraintsandprovidebuiltinchecksforconflictsandsubsumptionoccurrence.Wewillelaborateondesignchoicesanduseofthesetoolsviatwoshortexamplecases:aconstructionofagenericconstraintborrowedfromtheProcessInterchangeFormat(PIF)ontologyandaconstructionofanapplica-tionspecificconstraintborrowedfromourwork([Kal99a])intheAIRCRAFTontologyapplication.
Inthecaseofbuildingagenericconstrainttheusercandefineunary,binaryandternaryrelationsthatholdoveron-tologicalconceptsandchooselogicalconnectivestolinkthem.Thecollectionofconceptsfromtheontologyaswellasthedistributionofvariablesthatwillbesharedamongtheliteralsisdoneautomatically,theuseronlyhastoselecttheconceptshewantstouse.Theresultofeditinganax-iomofthecorePIF,whichisgivenbelowintextualform:“Thebeforerelationholdsonlybetweentimepoints”isasfollowsinFOPCnotation:
Ifweareinterestedinusingtheconstraintasanaxiomthenatthisstagewearereadytoaddittotheexistingontologyaxiomatisationafteraconflictandsubsumptioncheckingisdone.Thesortofconflictcheckweapplyde-clarestwoaxiomsasbeingcontradictorytoeachotherifafteramatchingoftheirheadshavebeensuccessful,theirsubgoalshavethesamesymbolsbutstillarenotunifiableafterhavingtheirvariablestemporarilybounded.Thesub-sumptioncheckwillensurethatfortwoaxiomsthattheirheadsmatch,wewon’tletamoregenericonetosub-sumeanexistingdetailedone.Thisisalimitedformofsubsumptioncheckthatwillpreventspecificinformationlosscausedbyagenericaxiom.Forexample,assumethe
target_typeguidancestoresmissiontargetweaponweaponguidanceTypeordnanceaircraftaircraftmissionType
max_rangemax_speedhorsepowerengine_manufacturerflyingObjectnumberflyingObjectnumberpropellorEnginenumbernameengineISA taxonomy declarations:
(format: aircraftweaponpropellor engine ISAISAISA flyingObjectordnanceengine Figure2:AselectionofrelationsfromtheAIRCRAFTontology.Therelationsarerepresentedasrectangularboxeswiththeconceptsthatholdoverstemmingfromthem.WealsoincludeasubsetoftheISAtaxonomydeclarationstionstoresaswell.Therearenomorerelationstoberetrievedbasedontheparticularconcept,sothemechan-ismwillproceedtoretrievepotentialrelationsbasedonassociatedkeywords.Thosewillbetheremainingcon-ceptsfromtherelationsthatalreadyhavebeenretrieved:target,guidanceTypeandaircraft.Thesameprocessisap-pliedforeachofthenewconceptswhichwillresultintheretrievalofthreemorerelations:mission,max .Anynewconceptsthatwillaccompany thenewrelations(i.e.number)willnotberegardedasnewkeywordstotrysincethiswillresultinretrievalofrela-tionsdissociatedwiththeoriginalkeyword.Therefore,atthispointthealgorithmterminatessincetherearenomorerelationstoretrievenorthereareconceptsfromtheoriginalretrievedrelationssetthathaven’tbeencheckedyet. Oncethecandidaterelationshavebeenretrievedtheuserselectstheoneshewantstoincludeintheconstraint.Inourcase,thosewere:storesandtarget type.Therecanbeanaugment-ationoftheconstraintwithextrapredicateorrelationswithrespecttothisvariable,butinourcase,thiswasboundedtotheconstant‘Naval-Unit’. Thefinalstepistolinktheconstraintliteralswithlo-gicalconnectives().Afteraconflictandsubsump-tioncheckingisdonetheconstraintisreadytoaddintheconstraintsbaseandtransformedautomaticallyintheerrorconditionspecificformat.WegivethembelowinFOPCnotationandinerrorconditionformat:inFOPC: Figure3:Ascreenshotthatshowsthestepofdefiningtheheadoftheconstrainttobebuiltalongwiththetypeofvariablesthatwillbeusedinit. Figure4:Ascreenshotthatshowsthestepofinstantiatingvariablesintheconstraint’srelations. 4Benefitsoftheapproach Theuseofontologicalconstraintsweproposehasseveralbenefitsforthesystem’sdesignprocess.Wesummarisebelowthemostimportantofthemalongwithpointerstodocumentedwork: augmentationofspecificationswithformallydefinedconstructsdrawnfromtheunderpinningontology.Wearguethattheseconstructsmightbereusedinothersimilarapplicationswhichmayresultinacost-effectivesolutionforthedesignprocess.In[Kal99a]weexplorethefeasibilityofthisapproachviaanexamplecaseinthedomainofACP(AirCam-paignPlanning)realisedthroughtheAIRCRAFTontology([VRMS99]); useofontologicalconstraintstodetectconceptualer-rorsinspecificationsthatuseontologicalconstructs.Thishasapotentialimpacttotheearlyphasesofsoft-waredesignsinceitmakesitpossibletodetecterrorsthatwerepreviouslyuncaught.Moreover,theseon-tologicalconstraintsmightbereusedtodetectsimilarkindoferrorsinotherapplications.In[Kal99b]wepresentanapplicationofthisapproachinthedomainofecologicalmodelling; themultilayerarchitecturemightbeusedtoeasethemappingofontologiesandspotmismatchesofcon- ceptsandrelationsinanarbitrarynumberoflayers.Thismaybeusefulwhenappliedtomethodologiesthatimposealayeredontologydesignapproach(see,forexample,[van98]). 5Useofmulti-layerarchitecture Wewilldemonstratebrieflyamotivatingexampleontheuseofthemulti-layerarchitectureborrowedfromthePHYSSYSontology.Theontology,whichisisdocumentedin[BAT97],isaformalontologybaseduponsystemdy-namicstheoryaspracticedinengineeringmodelling,sim-ulationanddesign.Itexpressesdifferentconceptualview-pointsonaphysicalsystemandconsistsofthreeengin-eeringontologiesformalisingtheseviewpoints.Inourex-amplecasewedealwithoneoftheseontologies,thecom-ponentontology. Thecomponentontologyisconstructedfrommere-ology,topologyandsystemstheory.Toquote[BAT97]: “Inaseparateontologyofmereologyapart-of-relationisdefinedthatformallyspecifiesthein-tuitiveengineeringnotionofsystemordevicede-composition.Thismereologicalontologyisthenimportedintoasecondseparateontologywhichintroducestopologicalconnectionsthatconnectmereologicalindividuals.Thistopologicalon-tologyprovidesaformalspecificationofwhat Y.Kalfoglou,D.Robertson5-7 Figure5:Thecomponentviewofaphysicalsystem:Itshowsthetopologyforanairpump.Sub-componentsaredrawninsidetheareadefinedbytheirsuper-component.Thesmallsolidblocksaretheinterfacesthroughwhichcomponentsareconnected. theintuitivenotionofanetworklayoutactuallymeansandwhatitspropertiesare.Theontologyofsystemstheoryincludesthetopologicalonto-logyanddefinesconceptslike(openorclosed)systems,systemboundary,etc.,ontopofit.”Todemonstrateacomponentviewpointbasedonthecomponentontology,weillustrateinfigure5(borrowedfrom[BAT97])astructural-topologicaldiagramforaphys-icalsystem,likeanairpump. TheprinciplesunderlyingtheconstructionandusageofthePHYSSYSontologyarebeyondthescopeofthispaper;wepointtheinterestedreaderto[BBWA96]forfurtherde-tails.Inthesequel,weelaborateontheapplicationofthemulti-layeredarchitecturetoeachofthethreeontologiesincludedinthecomponentontology:mereology,topologyandsystemstheory. Alltheontologieswereimplemented,originally,inOn-tolinguausingtheOntologyserver([FFPR96]).Wetrans-latedthemtothetargetlanguageweuse:inProlog.Al-thoughwecouldusetheautomatictranslationprovidedbytheserverwechosetodothismanually.Thismadeiteasiertotranslateselectivepartsoftheontologieswhilepre-servingthesyntacticeleganceoftheresultingHornclauses.In[Bri99]theauthorelaboratesontheOntolinguasyntaxtoPrologtranslationissue.5.1Mereology-Layer2 Thetoplayerofthearchitecture,layer2,consistsofthemereologyontology.Itprovidesdefinitionsformereolo-gicalrelationstospecifydecompositionandthepropertiesthatanydecompositionshouldhave.WerewriteOntolin-guastatementsoftheform:as:forspe-cificationstatementsandasontologicalaxiomswhichmustnotbeviolated.Thesecanberewrittenaserrorconditions,aswedescribedinanearliersection(2),ofthe form:.Anexcerptofthemereologyonto-logyisgivenbelowinthespecificationformatweadopt: specification(2,(individual(X)equal(X,X))).specification(2,(properof(X,Z)part partof(X,Y) properof(Y,Z))). specification(2,(directof(X,Y)properof(X,Y) (properof(Z,Y)properof(X,Z)))). specification(2,(disjoint(X,Y)(equal(X,Y) (properof(Z,X)properof(Z,Y))))). specification(2,(simple part,X))). Thedeclarativereadingoftheseclausesisthefollow-ing:thefirstclauserealisesthenotionofmereologically individual.AnindividualXisamereologicalindividualwhenequal(X,X)holds.Therelationequal(X,Y)defineswhichindividualsareconsideredtobemereolo-gicallyequalanditusuallyholdsforequal(X,X).Thesecondandthirdclauserepresenttheproperofrelation.Whenanindividual,X,ispartofindividualZthentheproperofrelationholds.Inthethirdclausetherecursivedefinitionofproperofreal-isesthetransitivityproperty.Weusethepart part individual/1predicatestatesthatanindividualXisregardedasasimpleindividualwhenithasnodecomposition. Apartfromthesespecificationstatementswecanalso Y.Kalfoglou,D.Robertson5-8 writedown,directlyfromtheOntolinguasyntax,errorcon-ditionswithrespecttothespecificationgivenabove: error(3,individual(X),equal(X,X)).error(3,properof(X,Y),properof(Y,X)).error(3,directof(X,Y),(properof(X,Y) (properof(Z,Y)properof(X,Z)))). error(3,disjoint(X,Y),(equal(X,Y) (properof(Z,X)properof(Z,Y)))). error(3,simple part,X))). Noticethattheindividual,directof, disjointandsimple of/2withre-specttoinstancesoftheairpumpsystem.5.2Topology-Layer1 Atlayer1ofthearchitectureweplacethetopologyon-tology.Thisontologyprovidesthemeanstoexpressthatindividualsareconnected.Axiomsensurethatonlysoundconnectionscanbemade.WeapplythesameprinciplestotransformtheOntolinguasyntaxinthespecificationformat: specification(1,(connection(C)connects(C,X,Y))).specification(1,(connects(C,X,Y)(connect(C,X,Y) connect(C,Y,X)))). ThefirstclausestatesthataconnectionCconnectstwoindividualsXandY.Theconnects/3predicaterealisesthesymmetricalpropertythatholdsfortheconnectsrela-tion.Itusesthepredicateconnect/3toexpressinstanceswithrespecttotheairpumpsysteminfigure5.Theseare: specification(1,(connect(valve1reservoir, valve1,reservoir)true)). specification(1,(connect(reservoirvalve2, reservoir,valve2)true)). specification(1,(connect(bellowsreservoir, bellows,reservoir)true)). specification(1,(connect(leverbellows, lever,bellows)true)). specification(1,(connect(coilMagnetlever, coilMagnet,lever)true)). specification(1,(connect(airSupplyvalve1, airSupply,valve1)true)). specification(1,(connect(airSupplyvalve1, Y.Kalfoglou,D.RobertsonairSupply,pump)true)). specification(1,(connect(powerSupplycoilMagnet, powerSupply,coilMagnet)true)). specification(1,(connect(powerSupplycoilMagnet, powerSupply,pump)true)). specification(1,(connect(airLoadvalve2, airLoad,valve2)true)). specification(1,(connect(airLoadvalve2, airLoad,pump)true)). NotethattheconnectionsairSupplyvalve1,powerSupplycoilMagnetandairLoadvalve2aretheexternalconnectionsofthesystemregardingthepumpsystemwhoseinternalconnectionsarethefirstfivefromtheabove.Accordingtofigure5theexternalconnectionsconnecttheoutsideindividualswithanindi-vidualinsidepumpandthepumpitself.Theontologicalconstraintsofthistopologicallayerarethefollowing: error(2,connection(C),connects(C,X,Y)).error(2,connects(C,X,Y),connects(C,Y,X)).error(2,connects(C,X,Y),(partof(Y,X))).error(2,connects(C,X1,Y1),(connects(C,X2,Y2) ((disjoint(X1,X2)disjoint(X1,Y2))(disjoint(Y1,X2)disjoint(Y1,Y2))))). Thefirsttwoconditionsusedtotrapside-effectsofthesymmetricalpropertythatholdsfortheairpumpsystemconnectionsaswellasinvaliddefinitionsofconnections.Thethirdconditionprohibitsthatapartisconnectedtoit-selforitswhole.Thelasterrorconditionusedtodetecterrorswhenaconnectionconnectstwoentirelyseparatedpairofindividuals.Itusesthemereologicalrelationdis-jointthathasalreadybeendefinedinlayer2.Thesecondi-tionsareplacedinlayer2ofthearchitecturetomonitorthetopologicalstatementsoflayer1.5.3Systemstheory-Layer0 Atthelowestlayerofthearchitecture,layer0,weplacethesystemstheoryontology.Itdefinesstandardsystem-theoreticnotionssuchassystem,sub-system,systemboundary,environment,openness/closeness,etc.Anex-cerptofthisontologyisgivenbelowinthespecificationformatweadopt: specification(0,(in part boundary(C,S) connection(C)system(S) connects(C,X,Y)in system(Y,S))). specification(0,(subsystem(SUB,SUP)system(SUB) system(SUP)properof(SUB,SUP))). specification(0,(open boundary(C,S))). specification(0,(closed system(S))). 5-9 Thedeclarativereadingfortheabovesystemstheoryspecificationisasfollows:thein predicatedefinesa connectiontobeintheboundaryofasystemwhenitcon-nectsanindividualinthesystemtoanindividualoutsidethesystem;thesubsystem/2predicateholdsforindi-vidualsthatarepartofasystemandmustbesystemthem-selves;theopen system/1predicate statesthatasystemisaclosedsystemwhenitisnotanopensystem.Apartfromthesedefinitionswefoundalsodefinitionsofsysteminstanceswithrespecttothediagramoffigure5:pump,powerSupply,airSupplyandairLoadareallsystems. Theontologicalconstraintsofsystemstheoryare: error(1,in error(1,inXsystem(S),insy(properThreeerrorshavebeendetected:twoatthemereologicallayerwithrespecttotheerroneousdefinitionofdisjoint,andoneatthetopologicallayerwheretheconditiondefinedovertheconnectsrelationwasprovedbytheinterpreter.Inparticularthedisjoint(reservoir,reservoir)anddisjoint(valve2,valve2)thatbelongintheconditionofconnectsrelationareerroneousandreportedatthelayerabove. Themostinterestingcaseiswhenwecheckthemodelfromthesystemstheorypointofview.Wecanask,forexample,whetherthepumpisanopensystem.Wewillgeta,correct,positiveanswer.However,thehiddenerroristrappedandreported: error References [BAT97] P.Borst,H.Akkermans,andJ.Top.Engin-eeringOntologies.InternationalJournalofHuman-ComputerStudies,46:365–406,1997. [BBWA96]P.Borst,J.Benjamin,B.Wielinga,and H.Akkermans.AnApplicationofOntologyConstruction.InProceedingsofECAI-96WokrshoponOntologicalEngineering,Bud-apest,Hungary,August1996.[Bri99] V.Brilhante.UsingFormalMetadataDe-scriptionsforAutomatedEcologicalModel-ing.InProceedingsoftheAAAI-99Work-shoponEnvironmentalDecisionSupportSys-temsandArtificialIntelligence(EDSSAI99),Orlando,Florida,USA,July1999. [CJB99] B.Chandrasekaran,R.Josephson,andR.Benjamins.WhatAreOntologies,andWhyDoWeNeedThem?IEEEIntelligentSystems,14(1):20–26,January1999.[FFPR96] A.Farquhar,R.Fikes,W.Pratt,andJ.Rice.TheOntolinguaServer:aToolforCol-laborativeOntologyConstruction.Inpro-ceedingsofthe10thKnowledgeAcquisitionWorkshop,KAW’96,Banff,Canada,November1996.AlsoavailableasKSL-TR-96-26.[GF95] M.GruningerandM.S.Fox.MethodologyfortheDesignandEvaluationofOntologies.InProceedingsofWorkshoponBasicOntolo-gicalIssuesinKnowledgeSharing,Montreal,Quebec,Canada,August1995. [Gom96] Gomez-Perez,A.AframeworktoVerifyKnowledgeSharingTechnology.ExpertSys-temswithApplication,11(4):519–529,1996.AlsoasStanford’sUniversity,KnowledgeSystemsLaboratory,TechnicalReport,KSL-95-10. [Gua98] Guarino,N.FormalOntologyandInformationSystems.InN.Guarino,editor,Proceedingsofthe1stInternationalConferenceonFormalOntologiesinInformationSystems,FOIS’98,Trento,Italy,pages3–15.IOSPress,June1998. [Kal99a] Kalfoglou,Y.andRobertson,D.ACaseStudyinApplyingOntologiestoAugmentandReasonabouttheCorrectnessofSpecific-ations.InProceedingsofthe11thInterna-tionalConferenceonSoftwareEngineering Y.Kalfoglou,D.RobertsonandKnowledgeEngineering,SEKE’99,Kais-erslauten,Germany,June1999.Alsoas:Re-searchPaperNo.927,Dept.ofAI,UniversityofEdinburgh. [Kal99b] Kalfoglou,Y.andRobertson,D.UseofFormalOntologiestoSupportErrorCheckinginSpe-cifications.InD.FenselandR.Studer,edit-ors,Proceedingsofthe11thEuropeanWork-shoponKnowledgeAcquisition,ModellingandManagement(EKAW99),Dagstuhl,Ger-many,pages207–220,May1999.Alsoas:ResearchPaperNo.935,Dept.ofAI,Univer-sityofEdinburgh. [LGJ98] J.Lee,M.Gruninger,Y.Jin,T.Malone,A.Tate,GYost,andothermembersofthePIFworkinggroup.ThePIFProcessInter-changeFormatandframework.KnowledgeEngineeringReview,13(1):91–120,February1998. [MTMS92]W.Mark,S.Tyler,J.McGuire,andJ.Schoss-berg.Commitment-BasedSoftwareDevelop-ment.IEEETransactionsonSoftwareEngin-eering,18(10):870–884,October1992.[SIC95] SICStus.SICStusPrologUser’sManual.ISBN91-630-38-7,IntelligentSystemsLaboratory-SwedishInstituteofComputerScience,1995. [Ste94] Sterling,L.andShapiro,E.TheArtofProlog.MITPress,4thedition,1994.ISBN0-262-69163-9. [UCH98]M.Uschold,P.Clark,M.Healy,K.William-son,andS.Woods.AnExperimentinOnto-logyReuse.InProceedingsofthe11thKnow-ledgeAcquisitionWorkshop,KAW98,Banff,Canada,April1998.[Usc98] Uschold,M.WherearetheKillerApps?InGomez-Perez,A.andBenjamins,R.,ed-itor,ProceedingsofWorkshoponApplicationsofOntologiesandProblemSolvingMethods,ECAI’98,Brighton,England,August1998.[van98] vanderVet,P.andMars,N.Bottom-UpConstructionofOntologies.IEEETransac-tionsonKnowledgeandDataEngineering,10(4):513–526,1998. [VJBCS98]P.R.S.Visser,D.M.Jones,T.J.M.Bench-Capon,andM.J.R.Shave.AssessingHetero-geneitybyClassifyingOntologyMismatches.InN.Guarino,editor,Proceedingsof1st 5-12 InternationalConferenceonFormalOntolo-giesinInformationSystems,FOIS’98,Trento,Italy,pages148–162.IOSPress,June1998. [VRMS99]A.Valente,T.Russ,R.MacGrecor,and W.Swartout.Buildingand(Re)UsinganOn-tologyforAirCampaignPlanning.IEEEIn-telligentSystems,14(1):27–36,January1999. Y.Kalfoglou,D.Robertson5-13
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务