您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页Managing Ontological Constraints Abstract

Managing Ontological Constraints Abstract

来源:五一七教育网
ManagingOntologicalConstraints

YannisKalfoglouyannisk@dai.ed.ac.uk

DavidRobertsondr@dai.ed.ac.uk

SchoolofArtificialIntelligence,

InstituteforRepresentationandReasoning,

DivisionofInformatics,UniversityofEdinburgh,

80SouthBridge,Edinburgh,EH11HN,Scotland

Abstract

Weexploretheuseofontologicalconstraintsinanewway:deployingtheminasoftwaresystem’sformalevaluation.Wepresentaformalismforontologicalconstraintsandelaborateonametainterpretationtechniqueinthefieldofontologies.Ontologicalconstraintsoftenneedenhancementstocaptureapplication-specificdiscrepancies.Weproposeaneditingsystemthatprovidesguidanceinbuildingthoseconstraintsandweexplainhowthishelpsustodetectconceptualerrorsthatre-flectamisuseofontologicalconstructs.Wede-scribeamultilayerarchitectureforperformingsuchchecksandwedemonstrateitsusageviaanexamplecase.Wespeculateonthepotentialim-pactoftheapproachforthesystem’sdesignpro-cess.

1Introduction

IntheAIontologicalcommunitymostworkisfocusedonthetwoissuesthatontologiesclaimtodeliver:know-ledgesharingandreuse.Intherecentyears,developmentsinthefieldhavebeenfastandnewwaysofdeveloping,browsingandeditingontologieshaveemerged.However,theobserveddearthofapplicationsreportedin[Usc98]isahardrealityandontologicalengineersareworkinghard

Aswedescribelaterinthepaperexistingontologicalax-iomsneedtobeenhancedtocapturedomain-specificdis-crepancies.Thispracticeisoftenencounteredwhenwemovefromtoplevelontologiesdowntodomainspecificontologieswheretheorderofspecificityincreases.

Thispaperisorganisedasfollows:insection2wepresentaformalisationforontologicalconstraintsalongwithametainterpretationtechniquethatmakesitpossibletocheckwhethergoalsthatsucceedintheproofsviol-atethoseconstraints.Wepresentaflexiblemultilayerap-proachtofacilitatethissortofchecksandinsection3weelaborateontoolsthathelpustoconstructontologicalcon-straints.Wediscussbenefitsoftheapproachanddemon-strateabriefuseofthemultilayerarchitectureinsections4and5respectively.Insection6wegivepointerstorelatedwork.

2Formalisingontologicalconstraints

Inthissectionwepresentaformalisationforontologicalconstraintsandhowwechosetorepresenttheminaspe-cificerrorformat.Insection2.1weelaborateonagenericinferencemechanismwhichismadeexplicitthroughmeta-interpretationandwepresentanerrorcheckingmechanismtailoredtotheparticularontologicalconstraints.Insec-tion2.2weshowhowwerealisethistheoreticalmodelinamultilayerapproachthatcombinestheinferencemechan-ismalongwiththeerrorcheckingandgivesusadditionaladvantageswhichwediscussinthesequel.Theontologicalconstraintsadoptthefollowingnotation:

whereisaunitgoalandareallvari-ablesin,andisaconditioncomposedoflogicalconnectives()and/orunitgoals.Theconditionmustbecomposedofvalidontologicalconstructsanditmustbetruewhentheunitgoalistrue.

Weareinterestedinproofsoverexistentiallyquantifiedgoals,sotheformulaistransformedintoanormalformwherethe‘’operatorbelowconnectstheoriginal(left)tothetransformedversion(right):

Wethenidentifythepredicatederivedfromthelefthandsideoftheoriginalimplicationofformulaandlosetheexistentialquantifierandouternegationsincetheseexpres-sionswillbeusedtotestforerrorsongoalsintheproof.Hence,therightpartofformulawillbe:

(D)Figure1:TheMultilayerarchitecture.Therightpartshowstheapproachasawhole,whereastheleftpartisamagnific-ationofalayer.

architectureatfigure1whereweincludeattheleftpartamagnificationofonelayer.Adescriptionofalayerfollows:Specificationconstructionstartsbyadoptingthesyntaxandsemanticsoftheontology.WeuseHornClausesasaspecificationconstructionformalismwiththenormalPro-logexecutionmodel.Thisallowsustointerpretthespe-cificationdeclarativelybasedontheunderpinningcompu-tationallogicwhiletheproceduralinterpretationmakesitpossibletocheckthecorrectnessofthespecificationauto-maticallybyusingthemeta-interpretermechanism.

Theontologicalconstructswillnotbetheonlypartsofthespecification.Infact,itisnormallyimpracticaltocon-structanexecutablespecificationbyusingonlytheonto-logy’sconstructs.Otherconstructsarenormallyaddedtocustomisethespecificationfortheparticulardomainofap-plication.Thesewillnotbenefitfromthemeta-interpretererrorcheckingmechanismbutcanbecheckedinthenor-malway.

Ontologicalaxiomsareusedtoverifythecorrectuseofontologicalconstructsinthespecification.Theirroleistoensurethatthecorrectinterpretationsofontologicalconstructswillbegiven.Thiscanbedoneautomatic-allywiththemeta-interpreterandaswedescribedinsec-tion1.1therecanbeextra,applicationspecificontologicalconstraintsthatareconstructedwiththeuseofsupportingtools,liketheeditorwedescribeinsection3.

Thespecificationalongwiththeontologicalconstraintsisinterpretedbythemeta-interpreter.Wheneverastate-mentinthespecificationdoesnotsatisfytheontologicalconstraintsanerrorisreported.

Therightpartoffigure1showsourapproachinamul-tilayerperspective.Thisallowsustocheckthecorrect-nessofontologicalconstraintsthemselves.Whethertheyareprovidedbyontologicalengineersintheformofon-tologicalaxiomsorareapplicationspecificerrorcondi-tionstheymaybeerroneouslydefined.Thiscouldleadtoanerroneouserrordiagnosiswithpernicioussideeffects.However,ourproofsthaterrorexistaredoneusingthesamemechanismasforspecifications,makingitpossibletodefineconstraintsonerrorontologies.Theadvantageofthisapproachisthatwecanusethesamecoremechanism,themeta-interpreterprogram,tocheckspecificationsandtheirontologicalconstraintssimultaneously.Ultimately,thislayercheckingcanbeextendedtoanarbitrarynum-beroflayersupwards,untilnomorelayerscanbedefined.Abriefexampleofthemultilayerapproachisgiveninsec-tion5,whileherewedrawtheattentionofthereadertotheformatweadopttorepresentspecificationstatementsinanalogywiththeclause/2builtinpredicatedescribedinsection2.1.Theonlydifferenceisthatweaddonemoreargumenttotheclausetoindicatetheindexofalayer.Theformatisasfollows:

specification(Index,(AB))

Thesameadditionhasbeenmadetotheerrordescriptionformatgiveninsection1.1.

3Buildingontologicalconstraints

Theexistingsetofontologicalconstraintscanbeaugmen-tedbyaddingextraconstraints.Asimilarapproachwas

Y.Kalfoglou,D.Robertson5-4

introducedin[UCH98],wheretheauthorsreportthattheyhadtoaddextraontologicalaxiomsintheirspecifica-tionformulationinordertoprovesomeconceptsthatweretreatedasprimitivesintheunderpinningontology.Wehaveelaboratefurtheronthenotionofdefiningextra,applica-tionspecificontologicalconstraintswhichresultsinacus-tomisedaxiomatisation.Webelievethattheusershouldbeprovidedwithsupportinutilisingbothkindsofconstraints,existingandnewonestailoredtotheparticularapplication.Whateverthechoice,theconstructsusedintheconstraintsshouldconformtotheontologyvocabularyandbeconsist-entwiththeexistingconstraints.Howevertheapplicationspecificconstraintscanuseextraconstructswhicharenotpartoftheunderpinningontology.

Withthisaiminmindwehavebuildtwoeditingtoolsthatfacilitatetheconstructionofontologicalconstraintsandprovidebuiltinchecksforconflictsandsubsumptionoccurrence.Wewillelaborateondesignchoicesanduseofthesetoolsviatwoshortexamplecases:aconstructionofagenericconstraintborrowedfromtheProcessInterchangeFormat(PIF)ontologyandaconstructionofanapplica-tionspecificconstraintborrowedfromourwork([Kal99a])intheAIRCRAFTontologyapplication.

Inthecaseofbuildingagenericconstrainttheusercandefineunary,binaryandternaryrelationsthatholdoveron-tologicalconceptsandchooselogicalconnectivestolinkthem.Thecollectionofconceptsfromtheontologyaswellasthedistributionofvariablesthatwillbesharedamongtheliteralsisdoneautomatically,theuseronlyhastoselecttheconceptshewantstouse.Theresultofeditinganax-iomofthecorePIF,whichisgivenbelowintextualform:“Thebeforerelationholdsonlybetweentimepoints”isasfollowsinFOPCnotation:

Ifweareinterestedinusingtheconstraintasanaxiomthenatthisstagewearereadytoaddittotheexistingontologyaxiomatisationafteraconflictandsubsumptioncheckingisdone.Thesortofconflictcheckweapplyde-clarestwoaxiomsasbeingcontradictorytoeachotherifafteramatchingoftheirheadshavebeensuccessful,theirsubgoalshavethesamesymbolsbutstillarenotunifiableafterhavingtheirvariablestemporarilybounded.Thesub-sumptioncheckwillensurethatfortwoaxiomsthattheirheadsmatch,wewon’tletamoregenericonetosub-sumeanexistingdetailedone.Thisisalimitedformofsubsumptioncheckthatwillpreventspecificinformationlosscausedbyagenericaxiom.Forexample,assumethe

target_typeguidancestoresmissiontargetweaponweaponguidanceTypeordnanceaircraftaircraftmissionType

max_rangemax_speedhorsepowerengine_manufacturerflyingObjectnumberflyingObjectnumberpropellorEnginenumbernameengineISA taxonomy declarations:

(format: ISA )

aircraftweaponpropellor engine

ISAISAISA

flyingObjectordnanceengine

Figure2:AselectionofrelationsfromtheAIRCRAFTontology.Therelationsarerepresentedasrectangularboxeswiththeconceptsthatholdoverstemmingfromthem.WealsoincludeasubsetoftheISAtaxonomydeclarationstionstoresaswell.Therearenomorerelationstoberetrievedbasedontheparticularconcept,sothemechan-ismwillproceedtoretrievepotentialrelationsbasedonassociatedkeywords.Thosewillbetheremainingcon-ceptsfromtherelationsthatalreadyhavebeenretrieved:target,guidanceTypeandaircraft.Thesameprocessisap-pliedforeachofthenewconceptswhichwillresultintheretrievalofthreemorerelations:mission,max

.Anynewconceptsthatwillaccompany

thenewrelations(i.e.number)willnotberegardedasnewkeywordstotrysincethiswillresultinretrievalofrela-tionsdissociatedwiththeoriginalkeyword.Therefore,atthispointthealgorithmterminatessincetherearenomorerelationstoretrievenorthereareconceptsfromtheoriginalretrievedrelationssetthathaven’tbeencheckedyet.

Oncethecandidaterelationshavebeenretrievedtheuserselectstheoneshewantstoincludeintheconstraint.Inourcase,thosewere:storesandtarget

type.Therecanbeanaugment-ationoftheconstraintwithextrapredicateorrelationswithrespecttothisvariable,butinourcase,thiswasboundedtotheconstant‘Naval-Unit’.

Thefinalstepistolinktheconstraintliteralswithlo-gicalconnectives().Afteraconflictandsubsump-tioncheckingisdonetheconstraintisreadytoaddintheconstraintsbaseandtransformedautomaticallyintheerrorconditionspecificformat.WegivethembelowinFOPCnotationandinerrorconditionformat:inFOPC:

Figure3:Ascreenshotthatshowsthestepofdefiningtheheadoftheconstrainttobebuiltalongwiththetypeofvariablesthatwillbeusedinit.

Figure4:Ascreenshotthatshowsthestepofinstantiatingvariablesintheconstraint’srelations.

4Benefitsoftheapproach

Theuseofontologicalconstraintsweproposehasseveralbenefitsforthesystem’sdesignprocess.Wesummarisebelowthemostimportantofthemalongwithpointerstodocumentedwork:

augmentationofspecificationswithformallydefinedconstructsdrawnfromtheunderpinningontology.Wearguethattheseconstructsmightbereusedinothersimilarapplicationswhichmayresultinacost-effectivesolutionforthedesignprocess.In[Kal99a]weexplorethefeasibilityofthisapproachviaanexamplecaseinthedomainofACP(AirCam-paignPlanning)realisedthroughtheAIRCRAFTontology([VRMS99]);

useofontologicalconstraintstodetectconceptualer-rorsinspecificationsthatuseontologicalconstructs.Thishasapotentialimpacttotheearlyphasesofsoft-waredesignsinceitmakesitpossibletodetecterrorsthatwerepreviouslyuncaught.Moreover,theseon-tologicalconstraintsmightbereusedtodetectsimilarkindoferrorsinotherapplications.In[Kal99b]wepresentanapplicationofthisapproachinthedomainofecologicalmodelling;

themultilayerarchitecturemightbeusedtoeasethemappingofontologiesandspotmismatchesofcon-

ceptsandrelationsinanarbitrarynumberoflayers.Thismaybeusefulwhenappliedtomethodologiesthatimposealayeredontologydesignapproach(see,forexample,[van98]).

5Useofmulti-layerarchitecture

Wewilldemonstratebrieflyamotivatingexampleontheuseofthemulti-layerarchitectureborrowedfromthePHYSSYSontology.Theontology,whichisisdocumentedin[BAT97],isaformalontologybaseduponsystemdy-namicstheoryaspracticedinengineeringmodelling,sim-ulationanddesign.Itexpressesdifferentconceptualview-pointsonaphysicalsystemandconsistsofthreeengin-eeringontologiesformalisingtheseviewpoints.Inourex-amplecasewedealwithoneoftheseontologies,thecom-ponentontology.

Thecomponentontologyisconstructedfrommere-ology,topologyandsystemstheory.Toquote[BAT97]:

“Inaseparateontologyofmereologyapart-of-relationisdefinedthatformallyspecifiesthein-tuitiveengineeringnotionofsystemordevicede-composition.Thismereologicalontologyisthenimportedintoasecondseparateontologywhichintroducestopologicalconnectionsthatconnectmereologicalindividuals.Thistopologicalon-tologyprovidesaformalspecificationofwhat

Y.Kalfoglou,D.Robertson5-7

Figure5:Thecomponentviewofaphysicalsystem:Itshowsthetopologyforanairpump.Sub-componentsaredrawninsidetheareadefinedbytheirsuper-component.Thesmallsolidblocksaretheinterfacesthroughwhichcomponentsareconnected.

theintuitivenotionofanetworklayoutactuallymeansandwhatitspropertiesare.Theontologyofsystemstheoryincludesthetopologicalonto-logyanddefinesconceptslike(openorclosed)systems,systemboundary,etc.,ontopofit.”Todemonstrateacomponentviewpointbasedonthecomponentontology,weillustrateinfigure5(borrowedfrom[BAT97])astructural-topologicaldiagramforaphys-icalsystem,likeanairpump.

TheprinciplesunderlyingtheconstructionandusageofthePHYSSYSontologyarebeyondthescopeofthispaper;wepointtheinterestedreaderto[BBWA96]forfurtherde-tails.Inthesequel,weelaborateontheapplicationofthemulti-layeredarchitecturetoeachofthethreeontologiesincludedinthecomponentontology:mereology,topologyandsystemstheory.

Alltheontologieswereimplemented,originally,inOn-tolinguausingtheOntologyserver([FFPR96]).Wetrans-latedthemtothetargetlanguageweuse:inProlog.Al-thoughwecouldusetheautomatictranslationprovidedbytheserverwechosetodothismanually.Thismadeiteasiertotranslateselectivepartsoftheontologieswhilepre-servingthesyntacticeleganceoftheresultingHornclauses.In[Bri99]theauthorelaboratesontheOntolinguasyntaxtoPrologtranslationissue.5.1Mereology-Layer2

Thetoplayerofthearchitecture,layer2,consistsofthemereologyontology.Itprovidesdefinitionsformereolo-gicalrelationstospecifydecompositionandthepropertiesthatanydecompositionshouldhave.WerewriteOntolin-guastatementsoftheform:as:forspe-cificationstatementsandasontologicalaxiomswhichmustnotbeviolated.Thesecanberewrittenaserrorconditions,aswedescribedinanearliersection(2),ofthe

form:.Anexcerptofthemereologyonto-logyisgivenbelowinthespecificationformatweadopt:

specification(2,(individual(X)equal(X,X))).specification(2,(properof(X,Z)part

partof(X,Y)

properof(Y,Z))).

specification(2,(directof(X,Y)properof(X,Y)

(properof(Z,Y)properof(X,Z)))).

specification(2,(disjoint(X,Y)(equal(X,Y)

(properof(Z,X)properof(Z,Y))))).

specification(2,(simple

part,X))).

Thedeclarativereadingoftheseclausesisthefollow-ing:thefirstclauserealisesthenotionofmereologically

individual.AnindividualXisamereologicalindividualwhenequal(X,X)holds.Therelationequal(X,Y)defineswhichindividualsareconsideredtobemereolo-gicallyequalanditusuallyholdsforequal(X,X).Thesecondandthirdclauserepresenttheproperofrelation.Whenanindividual,X,ispartofindividualZthentheproperofrelationholds.Inthethirdclausetherecursivedefinitionofproperofreal-isesthetransitivityproperty.Weusethepart

part

individual/1predicatestatesthatanindividualXisregardedasasimpleindividualwhenithasnodecomposition.

Apartfromthesespecificationstatementswecanalso

Y.Kalfoglou,D.Robertson5-8

writedown,directlyfromtheOntolinguasyntax,errorcon-ditionswithrespecttothespecificationgivenabove:

error(3,individual(X),equal(X,X)).error(3,properof(X,Y),properof(Y,X)).error(3,directof(X,Y),(properof(X,Y)

(properof(Z,Y)properof(X,Z)))).

error(3,disjoint(X,Y),(equal(X,Y)

(properof(Z,X)properof(Z,Y)))).

error(3,simple

part,X))).

Noticethattheindividual,directof,

disjointandsimple

of/2withre-specttoinstancesoftheairpumpsystem.5.2Topology-Layer1

Atlayer1ofthearchitectureweplacethetopologyon-tology.Thisontologyprovidesthemeanstoexpressthatindividualsareconnected.Axiomsensurethatonlysoundconnectionscanbemade.WeapplythesameprinciplestotransformtheOntolinguasyntaxinthespecificationformat:

specification(1,(connection(C)connects(C,X,Y))).specification(1,(connects(C,X,Y)(connect(C,X,Y)

connect(C,Y,X)))).

ThefirstclausestatesthataconnectionCconnectstwoindividualsXandY.Theconnects/3predicaterealisesthesymmetricalpropertythatholdsfortheconnectsrela-tion.Itusesthepredicateconnect/3toexpressinstanceswithrespecttotheairpumpsysteminfigure5.Theseare:

specification(1,(connect(valve1reservoir,

valve1,reservoir)true)).

specification(1,(connect(reservoirvalve2,

reservoir,valve2)true)).

specification(1,(connect(bellowsreservoir,

bellows,reservoir)true)).

specification(1,(connect(leverbellows,

lever,bellows)true)).

specification(1,(connect(coilMagnetlever,

coilMagnet,lever)true)).

specification(1,(connect(airSupplyvalve1,

airSupply,valve1)true)).

specification(1,(connect(airSupplyvalve1,

Y.Kalfoglou,D.RobertsonairSupply,pump)true)).

specification(1,(connect(powerSupplycoilMagnet,

powerSupply,coilMagnet)true)).

specification(1,(connect(powerSupplycoilMagnet,

powerSupply,pump)true)).

specification(1,(connect(airLoadvalve2,

airLoad,valve2)true)).

specification(1,(connect(airLoadvalve2,

airLoad,pump)true)).

NotethattheconnectionsairSupplyvalve1,powerSupplycoilMagnetandairLoadvalve2aretheexternalconnectionsofthesystemregardingthepumpsystemwhoseinternalconnectionsarethefirstfivefromtheabove.Accordingtofigure5theexternalconnectionsconnecttheoutsideindividualswithanindi-vidualinsidepumpandthepumpitself.Theontologicalconstraintsofthistopologicallayerarethefollowing:

error(2,connection(C),connects(C,X,Y)).error(2,connects(C,X,Y),connects(C,Y,X)).error(2,connects(C,X,Y),(partof(Y,X))).error(2,connects(C,X1,Y1),(connects(C,X2,Y2)

((disjoint(X1,X2)disjoint(X1,Y2))(disjoint(Y1,X2)disjoint(Y1,Y2))))).

Thefirsttwoconditionsusedtotrapside-effectsofthesymmetricalpropertythatholdsfortheairpumpsystemconnectionsaswellasinvaliddefinitionsofconnections.Thethirdconditionprohibitsthatapartisconnectedtoit-selforitswhole.Thelasterrorconditionusedtodetecterrorswhenaconnectionconnectstwoentirelyseparatedpairofindividuals.Itusesthemereologicalrelationdis-jointthathasalreadybeendefinedinlayer2.Thesecondi-tionsareplacedinlayer2ofthearchitecturetomonitorthetopologicalstatementsoflayer1.5.3Systemstheory-Layer0

Atthelowestlayerofthearchitecture,layer0,weplacethesystemstheoryontology.Itdefinesstandardsystem-theoreticnotionssuchassystem,sub-system,systemboundary,environment,openness/closeness,etc.Anex-cerptofthisontologyisgivenbelowinthespecificationformatweadopt:

specification(0,(in

part

boundary(C,S)

connection(C)system(S)

connects(C,X,Y)in

system(Y,S))).

specification(0,(subsystem(SUB,SUP)system(SUB)

system(SUP)properof(SUB,SUP))).

specification(0,(open

boundary(C,S))).

specification(0,(closed

system(S))).

5-9

Thedeclarativereadingfortheabovesystemstheoryspecificationisasfollows:thein

predicatedefinesa

connectiontobeintheboundaryofasystemwhenitcon-nectsanindividualinthesystemtoanindividualoutsidethesystem;thesubsystem/2predicateholdsforindi-vidualsthatarepartofasystemandmustbesystemthem-selves;theopen

system/1predicate

statesthatasystemisaclosedsystemwhenitisnotanopensystem.Apartfromthesedefinitionswefoundalsodefinitionsofsysteminstanceswithrespecttothediagramoffigure5:pump,powerSupply,airSupplyandairLoadareallsystems.

Theontologicalconstraintsofsystemstheoryare:

error(1,in

error(1,inXsystem(S),insy(properThreeerrorshavebeendetected:twoatthemereologicallayerwithrespecttotheerroneousdefinitionofdisjoint,andoneatthetopologicallayerwheretheconditiondefinedovertheconnectsrelationwasprovedbytheinterpreter.Inparticularthedisjoint(reservoir,reservoir)anddisjoint(valve2,valve2)thatbelongintheconditionofconnectsrelationareerroneousandreportedatthelayerabove.

Themostinterestingcaseiswhenwecheckthemodelfromthesystemstheorypointofview.Wecanask,forexample,whetherthepumpisanopensystem.Wewillgeta,correct,positiveanswer.However,thehiddenerroristrappedandreported:

error

References

[BAT97]

P.Borst,H.Akkermans,andJ.Top.Engin-eeringOntologies.InternationalJournalofHuman-ComputerStudies,46:365–406,1997.

[BBWA96]P.Borst,J.Benjamin,B.Wielinga,and

H.Akkermans.AnApplicationofOntologyConstruction.InProceedingsofECAI-96WokrshoponOntologicalEngineering,Bud-apest,Hungary,August1996.[Bri99]

V.Brilhante.UsingFormalMetadataDe-scriptionsforAutomatedEcologicalModel-ing.InProceedingsoftheAAAI-99Work-shoponEnvironmentalDecisionSupportSys-temsandArtificialIntelligence(EDSSAI99),Orlando,Florida,USA,July1999.

[CJB99]

B.Chandrasekaran,R.Josephson,andR.Benjamins.WhatAreOntologies,andWhyDoWeNeedThem?IEEEIntelligentSystems,14(1):20–26,January1999.[FFPR96]

A.Farquhar,R.Fikes,W.Pratt,andJ.Rice.TheOntolinguaServer:aToolforCol-laborativeOntologyConstruction.Inpro-ceedingsofthe10thKnowledgeAcquisitionWorkshop,KAW’96,Banff,Canada,November1996.AlsoavailableasKSL-TR-96-26.[GF95]

M.GruningerandM.S.Fox.MethodologyfortheDesignandEvaluationofOntologies.InProceedingsofWorkshoponBasicOntolo-gicalIssuesinKnowledgeSharing,Montreal,Quebec,Canada,August1995.

[Gom96]

Gomez-Perez,A.AframeworktoVerifyKnowledgeSharingTechnology.ExpertSys-temswithApplication,11(4):519–529,1996.AlsoasStanford’sUniversity,KnowledgeSystemsLaboratory,TechnicalReport,KSL-95-10.

[Gua98]

Guarino,N.FormalOntologyandInformationSystems.InN.Guarino,editor,Proceedingsofthe1stInternationalConferenceonFormalOntologiesinInformationSystems,FOIS’98,Trento,Italy,pages3–15.IOSPress,June1998.

[Kal99a]

Kalfoglou,Y.andRobertson,D.ACaseStudyinApplyingOntologiestoAugmentandReasonabouttheCorrectnessofSpecific-ations.InProceedingsofthe11thInterna-tionalConferenceonSoftwareEngineering

Y.Kalfoglou,D.RobertsonandKnowledgeEngineering,SEKE’99,Kais-erslauten,Germany,June1999.Alsoas:Re-searchPaperNo.927,Dept.ofAI,UniversityofEdinburgh.

[Kal99b]

Kalfoglou,Y.andRobertson,D.UseofFormalOntologiestoSupportErrorCheckinginSpe-cifications.InD.FenselandR.Studer,edit-ors,Proceedingsofthe11thEuropeanWork-shoponKnowledgeAcquisition,ModellingandManagement(EKAW99),Dagstuhl,Ger-many,pages207–220,May1999.Alsoas:ResearchPaperNo.935,Dept.ofAI,Univer-sityofEdinburgh.

[LGJ98]

J.Lee,M.Gruninger,Y.Jin,T.Malone,A.Tate,GYost,andothermembersofthePIFworkinggroup.ThePIFProcessInter-changeFormatandframework.KnowledgeEngineeringReview,13(1):91–120,February1998.

[MTMS92]W.Mark,S.Tyler,J.McGuire,andJ.Schoss-berg.Commitment-BasedSoftwareDevelop-ment.IEEETransactionsonSoftwareEngin-eering,18(10):870–884,October1992.[SIC95]

SICStus.SICStusPrologUser’sManual.ISBN91-630-38-7,IntelligentSystemsLaboratory-SwedishInstituteofComputerScience,1995.

[Ste94]

Sterling,L.andShapiro,E.TheArtofProlog.MITPress,4thedition,1994.ISBN0-262-69163-9.

[UCH98]M.Uschold,P.Clark,M.Healy,K.William-son,andS.Woods.AnExperimentinOnto-logyReuse.InProceedingsofthe11thKnow-ledgeAcquisitionWorkshop,KAW98,Banff,Canada,April1998.[Usc98]

Uschold,M.WherearetheKillerApps?InGomez-Perez,A.andBenjamins,R.,ed-itor,ProceedingsofWorkshoponApplicationsofOntologiesandProblemSolvingMethods,ECAI’98,Brighton,England,August1998.[van98]

vanderVet,P.andMars,N.Bottom-UpConstructionofOntologies.IEEETransac-tionsonKnowledgeandDataEngineering,10(4):513–526,1998.

[VJBCS98]P.R.S.Visser,D.M.Jones,T.J.M.Bench-Capon,andM.J.R.Shave.AssessingHetero-geneitybyClassifyingOntologyMismatches.InN.Guarino,editor,Proceedingsof1st

5-12

InternationalConferenceonFormalOntolo-giesinInformationSystems,FOIS’98,Trento,Italy,pages148–162.IOSPress,June1998.

[VRMS99]A.Valente,T.Russ,R.MacGrecor,and

W.Swartout.Buildingand(Re)UsinganOn-tologyforAirCampaignPlanning.IEEEIn-telligentSystems,14(1):27–36,January1999.

Y.Kalfoglou,D.Robertson5-13

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务