ll lll lllll llilt lill lil till il illt ilfl il1il lil ilil illilt ilil il il3 9004 03832385 0L. WhiteJames David D. ChoiPolyolefinsProcessing, Structure Development,and Properties. Hanser Hanser Publishers, Munich Gardner Publications, CincinnatiHANSERt.,Authors:The of Polymcr Engineering,Dr. James L. White and Dr. David D. Choi, Department Professor USASouth Forge Strect, Akron, OH, 44325-0301, The University ofAlron, 250 (Dr. David D. Choi is currently inc.; with Asahi Therrnofil, One Thermofil Way, Fowlcrville, MI 48836, USA)in the USA and in Canada byDistributed Publications, lnc.Hanscr Clarclner 3029, LISAOhio 45244 6915 Vrlle,v Avenuc, Oincinnati, (51.1) tluOlFax: 527 (513) 527-77 or I tt00-950-1t977Phonc: Internct: ht tp://ww.hanscrgardner.combyothcr countries l)istributed in all (}rl Hanser Verlagul6.]l Miinchcn, llernranyPostlacl.r 86 04 20, 9fl 4ll 09Fax: 449 () htllr:/,www.h,ttttr'r.rlcI r)l( rncl: 'l not cspeciallytrrtlcmarks, ctc., in this publicrtion, cvcn if thc lirrnrcr arc clcscriptivc narnes, hc usc. ol gcneral nanrcsi ils unclcrstrxrcl b,v thc Traclc Marks rntl Mcrchandisciclcntifrcd, is ltot lo bc tirken rs a sign that such acurrtlingly lrc used ficcly by anyonc.Marks Act, nray book to l)c true ancl accuratc at thc tlatc ol goint to prg55,arc bclicvetl Whilc thc atlvicc ancl infirrnrrtion in this tirr rny'r'rrors ornor thc'putrlishcr ciln act arry lcgal rcsponsibilitv authors nor llrc cclitors ncilhcr thc no wrrrantv, cxprcss or inrplicd, witlr rcspcct to thc mrtcrialhc publishrr rrrkcs omissions thrt nray bc nratlt-.'l hcrcirt.contrinccl I)ataOataloging itt l)ublication l.ibrary ol' Conqrcss L.Whitc, Iamcs & pr()pcrtiL's L.proccssing, structure tlevclttpnrt.nt /.Jantc-s I'olyolefins: lst cdWhitc, l)irvid Choi.-- CIn.P. (harticovc'r)ISBN I 56990-369-7 'l l. Polyolclins. l. Choi, I)avid. ll. itlc.'l 2004l,t IlJ0.P67w4tt clc2266u.,1'2-14 2(X)40 | 4996l)cr Dcutschen Ilibliothckllibliografischc Infirrmation dicse l)ublikation in der Deutschen Nationalbibliografic;llibliothek verzeichnct I)ie l)eutschc Daten sind inr Intcrnct iibcr
abruftrar.dctaillit-rte bibliografischc 3-446 22962 0ISBN fbrm or bv any mcans,bc reproduced or transmittecl in any rescrvcd. No part of this book may All rights withoutincluding photocopying or by any intbrnration storage and retricval system, electronic or mechanical, permissiou in wirting from the pubfisher.o Carl Hanser Verlag, Munich 2005lmmelManagement: Oswald Production Laaber, GermanyTypeset by Manuela Treindl, tr{i.lnchcn, GermanvMarc Miiller-Bremer, Rebranding, Coverconcept: . Kraus GbR, Holzkirchen, GermanyNICP Susanne Coverdesign: \"Thomas Bad Langensalza, Miintzer\GermanyPrinted and bound by Druckhaus PrefacePolyolefins, i.e., the polymers synthesized from olefinic monomers, are the majorcommercial thcrntoplastics. They are also importarlt components of rnajor therntoplasticclastomers. Polyethylene and polypropyler-re arc the two largest therr.noplastics in volunteand arc fabricated into filaments, fihns, and molded parts.-l'hc book treats the history, cornmercialization, characterizatior.r, and crystallographyof various commercial polyolefins and polystyrcnes and describes dcvclopment ofstructurc during fabrication of thesc polymers into various shapcs. It is in this lattcrarca that this book is ur-ric1ue. No other volunre dcscribcs the structuring of rnoltenpolyolefins in fiber, fllrn, and molciing processes with correlirtions bctween structuralorder such as crystalline unit ccll, polymorphic effccts and orientation with processingparamcters.We havc irrcorporated polystyrenc into this book although it is r.rot classified as apolyolefin, but rather as an aromatic vinyl polynrer. The structr.rre and behavior of itsisotactic and syndiotactic forn'rs arc similar to those of the corrcsponding polyolefinsand hclp the drawing of conclusior.rs. Atactic polystyrenc (solidifleclvitriflcs into a glass Inelt) ar-rd lcts us know thc fundarnentals of structuring in polymers prior to crystallizatiort in polynrcr opcrations.l)r()cessiltg Throughout the book wc rnade dircct comparisons of the structure and behavior ofpolyethylene, isotactic and syndiotactic polypropylcnes, isotactic polybute nc- l, isotacticpoly(4-mcthyl pentene- I ), and the different polystyrenes. This book should be of interestto engineers, chentists, and technologists working with polyolefrns.The book was written while both authors were affiliated with the Deoartmcnt andInstitute of Polymer Engineering at the University of Akron.jarnes L. WhiteDavid Dongman ChoiContentsOriginsofPolyolefins .... 1.1 Introduction and Prehistory ... 1.2 Polyethylene 1.2.1 LowDensityPolyethylene 1.2.2 Karl Ziegler and High l)cnsity Polyethylene 1.2.3 Standard Oilof Indiana ..... 1.2.4 Phillips Petroleum and High l)ensity Polyethylene 1.2.5 Line:rrLowDensityPolyethylene 1.3 IsotacticPolypropylene.... 1.3.1 Giulio Natta, Milan Politechnico and Montecirtini 1.3.2 StandardOiloflndianaand Phillips Petroleum ......1......... I.......2........2. . . . . 3..... 5. . . . . 5........6......7. . . . . 7....... 81.4 lsotacticPolybutcne-l .....91.5 Isotactic Polymcrs of Higher Olefins and Poly(4-Methyl Pentene- I ) . . l01.6 Ethylenc-PropyleneRubber 1.7 Metallocene Polynrcrization ... 1.8 StereoregularPolystyrcnes..... 1.8.1 Isotactic Polystyrenc 1.8.2 SyndiotacticPolystyrene 1.9 Syndiotactic Polypropylene .... 1.10 Cyclopolyolefins.. 1.ll New Metallocene Polyolefin Copolymers 1.12 CurrentProductionLevels. L 13 Bulk Polymer Properties and Chemical Srability References CharacterizationMethods .... 2.1 Introduction 2.2 AsymmetricCarbonAtoms andTacticity 2.2.1 Low Molecular Weight Compounds 2.2.2 Polyolefins [5] 2.2.3 Thcticitylevels. ......11........ 12........ 13..... l3........13........ 14.......14. . .. . . 16......16. . . . . . 17........ 19.......23......23......23. . . . 23.. .. 24...26VIII Contents2.32.42.52.62.7Crystallinity17)Crystal Structure 116, in CrystalsChain Conformations Molecular Weight Distribution 35)17,34, Oricntation2.7.1 Uniaxial Orientation2.7.2 tsiaxial Orientation272832JJ2a-)/40....43........ 442.8 Superstructure References Polyolefins Crystallographyof .......493.1 Irrtroduction ......49Investigations 3.2 Early of l-ow Molccular Weight Paraffinic Clompounds 493.3 Polycthylcnc 1.4 IsotacticPolypropylcnc.... 3.-5 SyndiotacticPolypropylcne.... 3.6 lsotacticPolylruter-re-l 3.7 SyncliotacticPolybutene-l Poly(4-Methyl Pcntcnc-l) 3.8 Isotactic of Othcr tx-Olefins 3.9 Isotactic Polyrners 3.10 Isotactic Polystyrene 3.ll SyndiotacticPolystyrene 3.12 Sumr.naryandliends ReJerurces Single Crystals: Structural Hierarchy and MorpholoSy . . .4.1 lntroduction4.2 Polyethylcnc4.2.1 Single Crystals .. . .4.2.2 Flow-Induced Structures from Solution . . . .......55.....51J........60....62.......63.....63. . . 65...... 66........67.....68........68757575atr777880......80... 80.......81........82....83......83.......834.34.2.3 Bulk Structure . . .Isotactic Polypropylene4.3.1 SingleCrystals.... 4.3.2 Flow-InducedStructuresfromSolution .... 4.3.3 BulkStructure... 4.4 4.5 SyndiotacticPolypropylene.... IsotacticPolybutene-l 4.5.1 SingleCrystals.... 4.5.2 BulkStructure... ContentsIX4.6 Isotactic Poly(4-Methyl Pentene-l) .... 4.6.1 SingleCrystals.... ....... 84......84... 84.......85......85...... 85... 86....... 86.... .... 87......87.......87...87........88......... 9l........ 9l........91......91......91.....93.....94....94...... 95.....95........95......96....c)6......98.....99......100...100.. . . 100.......101....101...102....... 1034.6.2 Flow-InducedStructuresfromSolution .... 4.6.3 BulkStructures... 4.7 IsotacticPolystyrene 4.7.1 Single Crystals .... 4.7.2 Flow-Induced from Solution .... Structures 4.7.3 Bulk Structure ... 4.8 Polystyrene Syndiotactic 4.8.1 Single Crystals .... 4.8.2 tsulkStructures... 4.9 Sunrnrary References SpherulitesandQuiescentCrystallization . 5.1 Introduction ... - 5.2 Sphcrulitcs 5.2.1 QuiescentlyCrystallizedPolyn-rcrs 5.2.2 Polyethylenc 5.2.3 IsotacticPolypropylene.... 5.2.4 SyndiotacticPolypropylene 5.2.5 IsotacticPolybutcnc-l 5.2.6 lsotactic Poly(4-mcthyl pentene-l) ..... 5.2.7 IsotacticPolystyrene 5.2.8 SyndiotacticPolystyrene 5.3 QuicsccntCrystallizationKinetics 5.3.1 General 5.3.2 Polyethylene 5.3.3 IsotacticPolypropylene.... 5.3.4 SyndiotacticPolypropylene .... 5.3.5 IsotacticPolybutene-l Polystyrene 5.3.6 Isotactic 5.4 5.3.7 SyndiotacticPolystyrene Time-Temperature Transformation and Continuous CoolingTiansformationPlots 5.5 SummaryandPerspectives.. References ContentsPolyolefin Copolymers and Blends 6.1 Introduction 6.2 Stereoblock Copolymers l,2l f 6.3 Copolymers of Polyethylene ... 6.3.1 General (EPM) 6.3.2 Ethylene-Propylene Copolymers 6.3.3 Ethylene-Butene-l/Hexene-l Copolymers ... 6.3.4 Ethylene-OcteneCopolymers. 6.3.5 Ethylene-StyreneCopolymers . 6.3.6 Ethylene-Cyclopcntene/Norborncne Copolymers 6.4 Copolyn\"rers of Polypropyler-re .. 6.4.1 Isotactic Polypropylene with Ethylcne [53] 6.4.2 Isotactic Polypropylenewith Othcr Monomers 6.4.3 Syndiotactic Polypropylcnewith llurene-t ... Blends 6.5.1 Inter-Polyolcfin Homopolymcr Miscibility 6.5.2 Polypropylene-Ethylene Copolymer Blcnds 6.6 6.5.3 Polypropylcr.rel)yr.ramicVulcanizatesf6Sl .. Pcrspective . . . 107.....107. . 108....... 109.. . 109. . .. . . ll0....... lll........111.......113.... l13....... ll4. . . I 14...... ll5....... lt5.... ll5. . . 115. . . 116.. l16.. .. ... 117.......1176.5 References Polymer Melt Processing, Rheological Properties, and Orientation inFlowingPolymerMelts .......1217.1 Irrtroduction 7.2.1 Single Screw Extrusion 1, 2] [ 7.2.2 Twin Screw Extrusion and PolyolefinModification/Grafting [2-4] 7.2.3 DieExtrusion[11] . 7.3 RheologicalPropertiesof PolymerMelts . 7.4 EffectsofAdditives 7 .5 Early Observations of Flow Birefringence . 7.6 Flow Birefringence and Stress . 7.7 Stress Optical Coefficients and Molecular Structure 7.8 OrientationFactorsandStressinMelts 7.9 FlowinDies 7.9.1 FlowPatternsandFlowBirefringence .... 7.9.2 Unstable Flow . 7.9.3 FlowStructuringof Polyolefins 7.2 PolymerMcltProcessing'lbchnology.... .....121.....121. . . l2I.. . 122.....124.....126......131. . . . l3l. . 132. . 134....... 135.....t36.... 136.. . 138....... 138ContentsXI7.10 Summary References MeltSpinning ...8.1 Introduction8.2 Melt Spinning Process8.2.1 GencralFilaments8.2.2 Continuous Filament Yarns .8.2.3 Bulked Continuous Fibers 8.2.4 Staple Il5l . .Fabrics 8.2.5 Spunbonded 14, l8-2llf 8.2.6 Melt-Blown Fabrics Il4l . .l)ynamics, Heat Trirnsfer, and Modeling in Melt Spinning8.3.1 Dynarnics and Hcat Balance8.3.2 Modeling of Melt SpinningMclt FIow Instabilitics8.4.1 Die Flow (see also Sectiorr 7.9.2) .Disturbances/lnstabilitics8.4.2 Spinline Melt Spinning of VitriS,ing Polyhydrocarbons8.5. I Atact ic I)olyst yrcnc8.5.2 ()yclopolyolefins ...8.5.3 Other Vitrifying Thcrmoplastics .8.6 ..139.......140145145145145147147t47148r498.3 r49149l5lt)t8.4 8.5 l52153154154155156t56t57t57l6ll6tt62163loJ8.5.4 Modeling of Orientation-Birefiingence l)evelopmentPolyethylene8.6.1 l{igh-Density Polycthylcnc .. . . .8.6.2 Ultrahigh Modulus Polyethylene Fibers .8.6.3 PolyethyleneCopolymers8.7 8.6.4 Polyethylenc-Polystyrene BlendsIsotactic Polypropylene ....8.7.1 High Thcticity Polymers8.7.2 Lower Thcticity Polymers8.7.3 Isotactic Polypropylene-Particulate CompoundsPolypropylene 8.7.4 Isotactic Blends8.7.5 Isotactic Polypropylene Thermoplastic Dpramic168t7lt7l..... 172.......173... 175......176....... 177Vulcanizates Polypropylene 8.8 Syndiotactic .... 8.9 Isotactic Polybutene-l Poly(4-Methyl Pentene-l) .... 8.10 Isotactic 8.ll Polystyrene Syndiotactic XIIContents8.12 TiendsandConclusions.. References FilmProcessingandProfileExtrusion 9.1 Introduction 9.2 FilmExtrusionProcesses 9.2.1 CastFilmExtrusion 9.2.2 Tubular Blown Film Extrusion . .. 9.2.3 Tentering Frame for Biaxially Oriented Filni [12] ......178.......179......185.....185.......185.....185.. . . . 186. . . . 1879.2.4 l)ouble llubblc Process for BiaxiallyOriented F'ihr fl3l ..... 18.3 Dynamics,Heat'liansfer,andModeling .. ....19.3.1 Cast Film Extrusion . . . 1[16-18] 'lubular 9.3.2 lJlown Film Extrusion ... ..... 1909.4 McltFlowandSolidificationlnstabilities.. 9.4.1 Hazc and Surface l{oughncss 9.4.2 Dic Flow Produced Irxtrudate Distortion 9.4.3 Cast Film Instabilities 9.4.4 Bubblelnstabilities Profile Extrusion 9.6.1 l'ubular Blown Filrn . . 9.6.2 lliaxiallyStrctchcdFilm 9.7 PolyethyleneFilm. 9.8 IsotacticPolypropylencFilm 9.8.1 Cast Film 9.8.2 TubularBlownFilm.. 9.8.3 BiaxiallyC)rientcdFilm. 9.9 SyndiotacticPolypropyleneFilm 9.10 Isotactic Polybutene-l Film .. 9.1I Isotactic Poly(4-Methyl Pentene-l) Film . 9.12 Syndiotactic Polystyrene Film . 9. 13 Summary and Conclusions . . References ....192. . . 192. . . . . 194.. . 194.....195. . 196.......lgT.. . 197.......lg8......199....202. . 202...203.......204......204... 206. .. . . 206. . 206... 207....... 208..213..... 213. ..... 213... 213.. .... 2149.5 9.6 AtacticPolystyrcncFilm l0Molding l0.l Introduction I0.2 Molding Processes 10.2.1 Compression Molding 10.2.2 Injecrion Molding Contents XIII10.2.3 BlowMolding 10.2.4 Thermoforming [31] . .. 10.2.5 ScraplessFormingl32l . 10.2.6 RotationalMolding[33] HeatTransfer,andModeling .. 10.3 Dynamics, 10.3.1 Injection Molding 10.3.2 BlowMolding 10.4 Atactic Polystyrene and Vitri$'ing Polyolefins 10.4.1 InjectionMolding Molding 10.4.2 lllow ....219..220......221......221....222. .. . .. 222.... 225. . 226......226. ... 22710.4.3 Modeling of f)rientation-Birefiingence l)evelopment . . . .. . 227.....22910.5 Polyethylene Molding ......22910.5.1 Injection .. . . 23110.5.2 lllow Molcling 10.5.3 Ilotational Molding .. . . 10.6 IsotacticPolypropylene... 10.7 SyndiotacticPolypropylene.... . .. 10.8 IsotacticPoly(4-MethylPentene-l) 10.9 lsotactic Polystyrene 10.10 Syndiotactic Polystyrene . 10. ll TrendsandConclusions. Rcferences 1l Properties of Polyolefins .... Mechanical It.l Introduction ..... and ll.2 Stress Small Strain Elasticity ll.3 lnfluenceofMolecularWeight ll.4 InfluenccofTemperature ....... 232.....232.......233......234. . .. . 235......235.......235....... 236...24I......241...... 241........243......243and Comparisons to Other Materials . . . . . 244I 1.5 Influence of Crystallinity Behavior 4l . . . 24511.6 Uniaxial Large Strain 13, ll.7 Mechanical Properties of Melt-Spur.r/Drawn Fibers . ll.8 HighModulusPolyolefinFibers. Properties of Films ll.9 Mechanical Blending References Subjectlndex. Authorlndex. ........245......248..248. . 249....... 250.......251.......25511.10 Mechanical Property Modification by Copolymerization andOrigins of Polyolefins1.1Introduction and PrehistoryIn this chapter, the invention and commercial development of several importantpolyolefins, especially crystalline polyolefin thermoplastics will be described. We will(LDPE) the development consider of low density polyethylene in the 1930s and continue(HDPE) and the isotactic polyolefins rvith high density polyethylene of the 1950s andlatcr, and will also briefly discuss ethylene-propylene rubber. We will also describe thenewer metallocene polyolefins syndiotactic and cyclopolyolefins of the 1980s and 1990s.It is presur-ned that the reader is aware of various features of polyolefin structure includingtacticity ernd lrranching. Details on these structural features are given in flhapter 2.It is uselul to begin with sorne perspective. It was only in the 1920s with the efforts ofH. Staudingcr l, 2l that the structure of polymers as long chain rnolecules wasf elucidated. The importance of the ability to synthesize these materials and theirpossibilities were commercial realized by industrial firrns around the world. The leading(lermancompany in this regard, which was cited by Staudinger in his book [2], was the (a l. G. Farbenir-rdustrie cclrnbir\"re of Farbenfabriken Bayer, BASF and Farbwerke Hoechstcreated in 1925). It developed atactic polystyrene, polyvinyl chloride, butacliene-acrylo-nitrile rubber, and butadiene-styrene rubber in subsequent years. Also commercializedwas the relatively small volume polyolefin elastomer, polyisobutylene. The two earlyI. G. Farbenindustrie hydrocarbon polymers were:{cH,-cuJ-+cH. C+.l-. CH.CH.(l-r)Both of these were primarily manufactured in the old BASF facility in Ludwigshafen.The I. G. Farbenindustrie activities and those of the American E. I. du Pont de Nemourswere also much more aggressive than initially those for polyethylene, which we willpresently discuss. The 1950s were to be the major period of polyolefin development.I Origins of Polyolefinson p. 19]fRefs. 1.21.2.1 PolyethyleneLow Density PolyethyleneEnglishof the large polyethylene was due to the efforts The development of a commercial and 30s to makeImperial Chemical Industries chemical company, [3,4], in the 1920s on the activities of Prof. A. Michels irtuse of the high pressure chemistry based ICI Dyestuff Divisionresearch was established at the Based on his activities, Amsterdirm. was delivered,Englar-rd. Ihe high pressure apparatus 1930s in Winnington, in the early IL. O. Gibson.principal researchers were E. W. Fawcett and work began ir-r 193 L The and persl.ectives.their research by Fawcett and (libson [5] describes A lc)34 paper in the range of 1000ethylene was heated under pressure In sonre ofthcir experinrents, Although traces of white powder wcre found, they wcre notto 2000 atmospheres. ethyleneFawcett and Gibson sought to react polyethylene. Subsequently, recogr.rized as 'C. was produceclirnd 170 A waxy solid substance at 1960 atnrospheres and benzalclehycle thc cmpirical forn-rula CH,, that iswas fbund to have and its analysis {cH* 0r {cH,-cH,!(t-il)in Marchwere discontinued was difficult to reproduce, and their efforts The experirnent l 933.apparatus, which possessed greater safety characteristics.Later, work began using a new likeinvolved M. W. Pcrrin and i. Cl. Paton. Perrin, The new generation of experiments theirPerrir-r and Paton began had worked with Michels in Amsterdam. Gibson, to Fawcett ar.rd1935 and soon, by using conditions similar in December experinents (3000Gibson, produced high-molecular weight polyethylene. At higher pressures oxygenhigher conversions. It came to be realized that some atmospheres), they obtained inspecification ICI filed a provisional patent needed as a polymerization initiator. was Perrin, Paton and Williams [6]. Theof Fawcett, Gibson, February 1936 in the names was 0.91 g/cmr.of this polyethylene derrsity produce polyethylene. Compressors toto scale up and commercially ICI soon decided Thesewere ordered. up to 3000 atmospheres ethylene at pressures continuously deliver by Michels, and a pilot plant was built in Winnington. The pilotwere to be designed Commercial production began at theplant ran intermittently until March 1938. tonsproduced in 1938, 10.5 ton of polyethylene was in May 1938. One Wallersford Works tons by 1942.in 1940 and576 in 1939, 106 tons 1.2 Polyethylenethat there wereby infrared spectroscopy paper, Fox and Martin [7] showed In a 1940 more methyl groups in the ICI high pressure polyethylenes than could be accountedpolyethylenes had significantThis led to the realization that these for by chain ends. of branching.amounts During World War IIpolyethylene. a license from I(lI to produce Dupont obtained developed by the I. G.radical polyethylene were for producing free processes alternate (Ludwigshtrfen) States.United and by Union Carbide in the in (lermany Farbenindr-rstrie prirnarily used for film packirging.polyethylene wirs At this time, low density 1.2.2 Karl Ziegler and High Density Polyethyleneir doctoratepolymerization. He had been a pioneer cll-organornetallic Karl Ziegler was It was known that metals,of Karl von Auwers at the University of lvlarbr-rrg. studer.rt in LudwigsIIASF similar mononrers. polymcrize buttrdicnc and sodir-rnr, could such as ef-fbrts toduring Worlcl War I. Ziegler's practiced such polyr.nerization haf-cn hacl with them clateand polynrerize new polvmers compour.rcls organon'retallic syr.rthesize of potassittlu andin the alkyl cclrnp