hep-th/9910213
Commentson“Entropyof2DBlackHolesfromCounting
Microstates”
by
Mu-InPark1andJaeHyungYee
DepartmentofPhysics,YonseiUniversity,Seoul120-749,Korea
arXiv:hep-th/9910213v1 27 Oct 1999ABSTRACT
WepointoutthatarecentanalysisbyCadoniandMignemionthestatisticalentropyof2DblackholeshasaseriouserrorinidentifyingtheVirasoroalgebrawhichinvalidatesitsprincipalclaims.
PACSNos:04.70.Dy,11.25.H,11.30.-j,04.20.Fy9September1999
RecentlyCadoniandMignemi[1]presentedamicroscopicalderivationoftheentropyofthetwo-dimensional(2D)blackholes.Theyhaveshownthatthecanonicalalgebraoftheasymptoticsymmetryof2DAnti-deSitter(ADS)spaceincludedtheVirasoroalgebra.UsingthisalgebraandtheCardy’sformulatheyobtainedthestatisticalentropywhichagreed,upto
√
afactorof
Butthereareseriousmismatches[10]withourpurpose:a)Becausethealgebraisdefinedonlyatone(boundary)pointthereisnoroomfortheinfinitetowerofsymmetrygeneratorsthroughtheFourier-seriesexpansionofthealgebraasrequiredintheBHSprocedure.b)J[χ]istime-dependentingeneralwhichmeansthatJ[χ]isnotconservedquantity.ThisiscontrasttotheusualfactthatJ[χ]isa(boundarypartof)conservedNoethercharge[5].Moreover,thealgebraandthecentraltermc(χ,ω)arenowtime-dependentandeventually“time-dependententropy”wouldbeexpectedS∼
2π
2π/λ
0
dtJ[χ](3)
withtimeperiodof2π/λandtheyobtainedaVirasoroalgebraintheasymptoticsymmetryalgebraof2Dblackholes.Butthisprocedureisanerroneousone.Letusexplainourargumentindetail.
WestartourargumentbyconsideringEq.(2)intheirsuggestingframe.Itistruethatthe(overall)timeintegrationof(2)hasadefinitemeaningas
ˆ[[χ,ω]]+cδωJ[χ]=Jˆ(χ,ω)
(4)
withthecentralcharge(23)ofRef.[1]andthislookslikeaVirasoroalgebra.Buttheproblem
ofthismethodisthattheleft-handsideof(4)cannotbewrittenas
ˆ[χ],Jˆ[ω]}DB,{J
(5)
whichisessentialfortheinterpretationofthetimeintegrated(1)asaVirasoroalgebra:Let
usconsider
{J[χ],H[ω]}DB={J[χ],J[ω]}DB=δωJ[χ]
whichimpliesthatH[ω]isthecorrect(asymptotic)symmetrygenerator,i.e.,
{φ(x),H[ω]}DB=δωφ(x).
(7)(6)
forthesymmetrytransformationδωφofthefieldφ.[ThisDiracbracketaswellasthePoissonbracketinEq.(19)ofRef.[1]canbewell-definedcontrasttotheclaimsofCadoniandMignemifollowingtheworkofRef.[11].]HereitisanimportantfactthattheDiracbracketsarealldefinedatequaltimesbecausetheconstitutingPoissonbracketsareequaltimesinnatureforthelocalfieldtheory:
{A,B}=
dx
δA
δπk(x,t)3
−
δA
δφk(x,t)
forthecanonicalconjugatespairsφk(x,t),πk(x,t).Ifweperformthe(overall)timeintegrationover(3)theleft-handsidebecomes
λ
2π
2
2π/λ
0
dt
′
2π/λ
0
dt
2π
δ(t−t′)intheintegrand.
Thisisadirectconsequenceof(6)whichisawell-knownfactrelatedtotheNoethertheoreminthefieldtheory;iftheirclaimwhichequating(4)and(5)wascorrect,thetime-integrated
ˆ[χ](≈Jˆ[χ])shouldbetreatedasthesymmetrygeneratornecessarilycontrasttoquantityH
(7).
Inconclusion,theymadeaseriousmistakebyidentifying(4)and(5)andhencetheirwayofapplyingtheCardy’sformulatoobtaintheblackholeentropy(25)ofRef.[1]withthemisidentifiedc(centralcharge)andl0(lowesteigenvalueoftheVirasorogenerator)cannotbejustified.
MIPwouldliketothankProf.StevenCarlip,Drs.Gung-wonKangandHyuk-jaeLeeforseveralhelpfuldiscussions.MIPwassupportedinpartbyapostdoctoralgrantfromtheNaturalScienceResearchInstitute,YonseiUniversityintheyear1999andinpartbytheKoreaResearchFoundationunder98-015-D00061.
λ
References
[1]M.CadoniandS.Mignemi,Phys.Rev.D59,081501(1999).[2]M.CadoniandS.Mignemi,Phys.Rev.D51,4319(1995).
[3]J.D.BrownandM.Henneaux,Comm.Math.Phys.104,207(1986).
[4]A.Strominger,J.HighEnergyPhys.02,009(1998);D.Birmingham,I.SachsandS.Sen,
Phys.Lett.B424,275(1998).[5]ThishasbeenrecentlystudiedalsointheChern-Simonstheories,M.Ba˜nados,Phys.Rev.
D52,5816(1996),M.Ba˜nados,T.Brotz,andM.Ortiz,Nucl.Phys.B545,340(1999);M.-I.ParkandP.Oh,Mod.Phys.Lett.A14,231(1999);M.-I.Park,Nucl.Phys.B544,377(1999);P.Oh,e-printhep-th/9906197.
4
[6]S.Carlip,Class.Quant.Grav.15,3609(1998).
[7]R.Jackiw,in“QuantumTheoryofGravity”editedbyS.M.Christensen(Hilger,Bristol,
UK,1984);C.Teitelboim,ibid.[8]T.ReggeandC.Teitelboim,Ann.Phys.88,286(1974).
[9]P.A.M.Dirac,Lecturesonquantummechanics(YeshivaUniversityPress,NewYork,
19).[10]Similarsituationoccursalsointhehigherdimensionblackholesystems,S.Carlip,Phys.
Rev.Lett.82,2828(1999);e-printgr-qc/9906126;M.-I.ParkandJ.Ho,Phys.Rev.Lett.(inpress),Alberta-Thy-09-99,hep-th/9910158.[11]M.-I.Park,quotedinRef.[5].
5