EpoxyResin/PolyurethaneHybridNetworksSynthesizedbyFrontal
Polymerization
SuChen,*YuanTian,LiChen,andTingHu
CollegeofChemistryandChemicalEngineeringandKeyLaboratoryofMaterial-OrientedChemicalEngineeringofJiangSuProVinceandMOE,NanjingUniVersityofTechnology,No.5XinMofanRoad,
Nanjing210009,People’sRepublicofChina
ReceiVedOctober31,2005.ReVisedManuscriptReceiVedFebruary23,2006
Wereportthefirstsynthesisoftheepoxyresin/polyurethane(EP/PU)hybridnetworksviafrontalpolymerization(FP).Inatypicalrun,theappropriateamountsofreactants(poly(propyleneoxideglycol),epoxyresindiglycidyletherofbisphenolA,2,4-toluenediisocyanate,and1,4-butanediolwithstannouscaprylate(asthecatalyst))weremixedtogetheratinitialtemperatureinthepresenceoftoluene(asthesolvent).FPwasthermallyignitedatoneendofthetubularreactor,andtheresultanthotfrontspropagatedthroughoutthereactionvessel.Onceinitiated,nofurtherenergywasrequiredforpolymerizationtooccur.Thedependenceofthefrontvelocityandfronttemperatureonthecatalystconcentrationwasthoroughlyinvestigated.ThesampleswerecharacterizedwithaFouriertransforminfraredspectrometer,thermo-gravimetricanalysis,andascanningelectronmicroscope.EP/PUhybridnetworkssynthesizedbyFPhavethesamepropertiesasthosesynthesizedbybatchpolymerization,buttheFPmethodrequiressignificantlylesstimeandlowerenergyinput.
Introduction
Interestinfrontalpolymerization(FP)hasincreasedinrecentyearssinceFPbecameapromisingnewtechniqueforsynthesizinguniformpolymersandpolymericnetworksinarapidfashion.FPisamodeofconvertingamonomerintoapolymerviaalocalizedreactionzonethatpropagatesthroughaliquidmonomer(Figure1a).Firstintroducedasawaytosynthesizepoly(methylmethacrylate)athighpressurebyChechiloetal.in1972,1thismethodwaslaterextendedbyPojmanandco-workerstoperformalargenumberofexperimentalandtheoreticalworks.2-7
Anoverwhelmingmajorityofworkhasbeenfocusedonfree-radicalpolymerizationbecauseitisusuallyhighlyexothermic,andtheheatofthereactionprovidesautoca-talysisforapolymerizationfrontpropagatingthroughaliquidmonomer.Subsequently,Pojmanandco-workershavedonealotofworkfocusingonthefeasibilityoftravelingfrontsinsolutionsofthermalfree-radicalinitiatorsinavarietyofneatmonomersatambientpressureusingliquidmonomers8,9orasolidmonomer.10,11Theavailabilityoftheirpreparation
*Towhomcorrespondenceshouldbeaddressed.E-mail:yahoo.com.cn.
prcscn@
Figure1.Schematicrepresentationof(a)FPoccurringalongatubularreactorand(b)BPoccurringinareactionkettle.
techniquesallowstravelingfrontsinsolutionsofathermalfree-radicalsystematambientpressurewithoutremovinginitiatorsfrommonomers;thus,longerpotlivescanbeachievedforthelatter.FurtherdevelopmentoftheFPawaitedthediscoveryofothersuitablemonomersthatdidnotboilatthefronttemperatureforthestablefront.Severalresearchersrecentlystudiedfrontalcopolymerization12andUV-inducedFPofmultifunctionalacrylatemonomers.13Themethodwasalsoeffectivelyappliedtoepoxyresinsandtheirinterpenetratingpolymernetworks(IPNs).14,15Pojmanetal.16reportedonepoxy-acrylatebinarysystems.Begishevet
(9)Pojman,J.A.;Craven,R.;Khan,A.;West,W.J.Phys.Chem.1992,
96,7466.
(10)Pojman,J.A.;Nagy,I.P.;Salter,C.J.Am.Chem.Soc.1993,115,
11044.
(11)Fortenberry,D.I.;Pojman,J.A.J.Polym.Sci.,PartA:Polym.Chem.
2000,38,1129.
(12)Perry,M.F.;Volpert,V.A.;Lewis,L.L.;Nichols,H.A.;Pojman,J.
A.Macromol.TheorySimul.2003,12,276.
(13)Nason,C.;Roper,T.;Hoyle,C.;Pojman,J.A.Macromolecules2005,
38,5506.
(14)Arutiunian,K.A.;Davtyan,S.P.;Rozenberg,B.A.;Enikolopyan,
N.S.Dokl.Akad.NaukSSSR1975,223,657.
(15)Chekanov,Y.;Arrington,D.;Brust,G.;Pojman,J.A.J.Appl.Polym.
Sci.1997,66,1209.
(16)Pojman,J.A.;Griffith,J.;Nichols,H.A.e-Polymers2004,13,1.
(1)Chechilo,N.M.;Khvilivitskii,R.J.;Enikolopyan,N.S.Dokl.Akad.
NaukSSSR1972,204,1180.
(2)Davtyan,S.P.;Surkov,N.F.;Rozenberg,B.A.;Enikolopyan,N.S.
Dokl.Phys.Chem.1977,232,.
(3)Davtyan,S.P.;Gel’man,E.A.;Karyan,A.A.;Tonoyan,A.O.;
Enikolopyan,N.S.Dokl.Phys.Chem.1980,253,579.
(4)Enikolopyan,N.S.;Kozhushner,M.A.;Khanukaev,B.B.Dokl.Phys.
Chem.1974,217,676.
(5)Surkov,N.F.;Davtyan,S.P.;Rozenberg,B.A.;Enikolopyan,N.S.
Dokl.Phys.Chem.1976,228,435.
(6)Pojman,J.A.;Willis,J.;Fortenberry,D.;Ilyashenko,V.;Khan,A.J.
Polym.Sci.,PartA:Polym.Chem.1995,33,3.
(7)Pojman,J.A.;Curtis,G.;Ilyashenko,V.M.J.Am.Chem.Soc.1996,
118,3783-3784.
(8)Pojman,J.A.J.Am.Chem.Soc.1991,113,6284.
10.1021/cm052391sCCC:$33.50©2006AmericanChemicalSociety
PublishedonWeb03/18/2006
2160Chem.Mater.,Vol.18,No.8,2006
Scheme1.FormationofEP/PUHybridNetworksSynthesizedbyFPorBP
Chenetal.
al.17,18studiedfrontalanionicpolymerizationofe-caprolac-tam,andFiorietal.19producedpolyacrylate-poly(dicyclo-pentadiene)networksfrontally.FPhasbeenusedtoprepareanumberofpolymermaterials.20-23Pojmanetal.24preparedthermochromiccompositeswhosecolorwastemperaturedependentviaFP.Szalayetal.25reportedconductivecompositespreparedfrontally.Vicinietal.26developedaFPmethodfortheconsolidationofstone.FioriandMariani27preparedpolyurethanes(PUs)byusing1,6-hexamethylenediisocyanateandethyleneglycolfrontallyanddemonstratedfrontalring-openingmetathesispolymerization.28Recently,Chenetal.29-31reportedthatsegmentedPUandPU-nanosilicahybridsweresynthesizedwithFP.ItprovidedafeasiblewaytouseFPtocommerciallysynthesizePUswithlessenergyandlesscostthanthoseoftraditionalbatchpolymerization(BP;seeninFigure1b).
PUsprovideawiderangeofpropertiesfromavarietyofstartingmaterials.Tailor-madepropertiesofthesematerials
(17)Begishev,V.P.;Volpert,V.A.;Davtyan,S.P.;Malkin,A.Y.Dokl.
Akad.NaukSSSR1973,208,2.
(18)Begishev,V.P.;Volpert,V.A.;Davtyan,S.P.;Malkin,A.Y.Dokl.
Phys.Chem.1985,279,1075.
(19)Fiori,S.;Mariani,A.;Ricco,L.;Russo,S.e-Polymers2002,29,1.(20)Kim,C.;Teng,H.;Tucker,C.L.;White,S.R.J.Comput.Mater.
1995,29,1222.
(21)Pojman,J.A.;Elcan,W.;Khan,A.M.;Mathias,L.J.Polym.Sci.,
PartA:Polym.Chem.1997,35,227.
(22)Chekanov,Y.A.;Pojman,J.A.J.Appl.Polym.Sci.2000,78,2398.(23)Washington,R.P.;Steinbock,O.J.Am.Chem.Soc.2001,123,7933.(24)Nagy,I.P.;Sike,L.;Pojman,J.A.J.Am.Chem.Soc.1995,117,
3611.
(25)Szalay,J.;Nagy,I.P.;Barkai,I.;Zsuga,M.Angew.Makromol.Chem.
1996,236,97.
(26)Vicini,S.;Mariani,A.;Princi,E.;Bidali,S.;Pincin,S.;Fiori,S.;
Pedemonte,E.;Brunetti,A.Polym.AdV.Technol.2005,16,293.(27)Fiori,S.;Mariani,A.Macromolecules2003,36,2674.
(28)Mariani,A.;Fiori,S.;Chekanov,Y.;Pojman,J.A.Macromolecules
2001,34,6539.
(29)Chen,S.;Sui,J.J.;Chen,L.Colloid.PolymSci.2005,283,932.(30)Chen,S.;Sui,J.J.;Chen,L.;Pojman,J.A.J.Polym.Sci.,PartA:
Polym.Chem.2005,43,1670.
(31)Chen,S.;Feng,C.;Sui,J.J.ActaPolym.Sin.2005,1,1.
canbeobtainedfromwell-designedcombinationsofmon-omericmaterials.Onamolecularbasis,PUmaybedescribedasthelinearstructureblockcopolymerofthe(AB)ntype.PartA,thehardsegment,iscomposedofoligomers,whicharepreparedbythereactionofalowmolecularweightdiolortriolchainextenderwithdiisocyanate.PartB,thesoftsegment,isnormallyapolyesterandapolyetherpolyolwithamolecularweightof1000-3000.32ToimprovetheperformancepropertiesofPUsinvariousapplications,hybridPUnanocomposites33-36andmultiphasepolymericsystemssuchasIPNs37-39havebeenextensivelyusedformorethanthreedecades.Inthispublication,wedescribehowweproducedepoxyresin/PUhybridnetworksusingFP.Inatypicalrun,theappropriateamountsofreactants(poly-(propyleneoxideglycol)(PPG),epoxyresindiglycidyletherofbisphenolA(E44),2,4-toluenediisocyanate(TDI),1,4-butanediol(BD),andstannouscaprylate(asthecatalyst))weremixedtogetherataninitialtemperatureinthepresenceoftoluene(asthesolvent).FPwasthermallyignitedatoneendofthetubularreactor,andtheresultanthotfrontspropagatedthroughoutthereactionvessel.Nofurtherenergywasrequiredforpolymerizationtooccur.Theschematicsynthesisofepoxyresin(EP)/PUhybridnetworksispresentedinScheme1.40Wedeterminedtheeffectfactorsoffrontvelocity,stannouscaprylateconcentration,and
(32)(33)(34)(35)(36)(37)(38)(39)(40)
Chen,T.K.;Tien,Y.I.;Wei,K.H.Polymer2000,41,1345.Goda,H.;Frank,C.W.Chem.Mater.2001,13,2783.Tien,Y.I.;Wei,K.H.Macromolecules2001,34,9045.
Phadtare,S.;Kumar,A.;Vinod,V.P.;Dash,C.;Palaskar,D.V.;Rao,M.;Shukla,P.G.;Sivaram,S.;Sastry,M.Chem.Mater.2003,15,1944.
Chen,S.;Sui,J.J.;Chen,L.ColloidPolym.Sci.2004,283,66.Titier,C.;Pascault,J.P.;Taha,M.;Rozenberg,B.J.Polym.Sci.,PartA:Polym.Chem.1995,33,175.
Chen,J.;Pascault,J.P.;Taha,J.J.Polym.Sci.,PartA:Polym.Chem.1996,34,28.
Chen,T.H.;Li,H.S.;Gao,Y.;Zhang,M.L.J.Appl.Polym.Sci.1998,69,887.
AnandPrabu,A.;Alagar,M.Prog.Org.Coat.2004,49,236.
EpoxyResin/PolyurethaneHybridNetworkstemperatureontheFP,alongwithcomparisonofFPwithBP.
ExperimentalSection
Materials.PPG(hydroxylnumberof56mgKOH/g,averagemoleculeweightof2000)wasacquiredfromDowCo.TheE44([epoxyvalue])0.41-0.47equiv/100g),stannouscaprylate,TDI,BD,andtolueneweresuppliedbyAldrichandusedasreceived.FP.ForthesynthesisoftheEP/PUhybridnetworksbyFP(showninFigure1a),theappropriateamountsofE44,TDI,PPG,BD,andstannouscaprylate(asthecatalyst)weremixedtogetheratambienttemperatureintolueneinaflask.AtypicalmolarcompositionwasTDI/PPG/BD)2.8:1:1mol/mol.Theflaskwasshakenvigorouslytoobtainahomogeneousmixture.Then,thesolutionwaspouredintoa10mL(D)15mm)testtube,andaK-typethermocouple,connectedtoadigitalthermometer,wasutilizedtomonitorthetemperaturechange.Thejunctionwasimmersedatabout1.0cmfromthefreesurfaceoftheliquid.Theupperlayerofthemixturewasthenheatedbyasolderingironbaruntiltheformationofahotpropagatingfront.
Thefrontvelocitiesweredeterminedbymeasuringthedistancethatthefronttraveledasafunctionoftime.WhenpureFPoccurred,aconstantvelocityfrontpropagatedwithalmostnobubbles.Temperatureprofilesandthemaximumtemperature(Tmax)ofthefrontweremeasuredbyusingaK-typethermocouplebymeasuringthetemperatureatafixedpointasafunctionoftime.Subsequently,theywereconvertedtospatialprofilesusingthefrontvelocity.BP.SeveralbatchrunshadbeenperformedtocomparetheresultantsampleswiththecorrespondingonesobtainedbyFP.Inatypicalrun,thesameamountsofeachcomponentasquotedaboveweremixedwithvigorousstirringinareactionvesselandimmersedinathermostaticoilbathsetat85°Cfor3h.Thenthemixturewascooledbacktoambienttemperatureandstirredfor1h.
Characterization.ThechemicalstructureofEP/PUhybridnetworkswasanalyzedbyFouriertransforminfrared(FT-IR)spectroscopyintherange450-4000cm-1usinganAVATAR-360(KBrdisk,scans,4cm-1resolution).TheweightlossoftheEP/PUhybridnetworksonheatingwasstudiedbythermo-gravimetricanalysis(TGA)usingathermogravimetricapparatusShimadzu-TGA50inanitrogenatmosphere.Measurementsweretakenwithaheatingrateof10°C/minfrom30to600°C.ThesurfacemorphologyofEP/PUhybridnetworkscoatedwithAuwasinvestigatedbyscanningelectronmicroscopy(SEM)usingaQUANTA200.SEMsampleswerepreparedbyapplyingdropsofhybridsontohotaluminumSEMstubs,followedbydryingatambienttemperature.
ResultsandDiscussion
PreliminaryExperiments.WehaveperformedseveralpreliminaryexperimentstofindasuitablerouteforobtainingPUbyFP.29Usually,thepotlifeisanimportantfactorforFP.Weevaluatedthepotlifeviamixingthereactants,leavingthematambienttemperature,andvisuallydetermin-ingatwhattimetheycouldspontaneouslypolymerized.Onthebasisofthispoint,weemploythesamemethodtoexaminethepotlifeinpreparingEP/PUhybridnetworksbyFP.WefoundthatasolutionofE44,PPG,BD,TDI,stannouscaprylate([NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol,[catalyst]/[TDI])1.0×10-3mol/mol),andtoluene(10wt%)exhibitedapotlifeofmorethan3hattheambienttemperature(30°C),andinstantaneousspon-taneouspolymerization(SP)doesnotoccur.Somelitera-
Chem.Mater.,Vol.18,No.8,20062161
Figure2.Frontpositionvstimefortypicalruns(a-d).(a)PurePUpreparedbyFP,[NCO]/[OH])1.4:1mol/mol;[catalyst]/TDI])1.0×10-3mol/mol;toluene)10wt%.(b)EP/PUhybridnetworkspreparedbyFP,E44)5wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(c)EP/PUhybridnetworkspreparedbyFP,E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(d)EP/PUhybridnetworkspreparedbyFP,E44)15wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.
ture27,41reportedthatanextendedpotlifeinthesynthesisofPUscanbeachievedbyaddingsuitableamountsofadditive(pyrocatechol)todepressstheactivityofdibutyltindilaurate(DBTDL,asthecatalyst)atambienttemperature.However,bypyrocatecholadditionapotlifecouldbeonlyachievedto25min.WehavefoundthatstannouscaprylatecatalystisbetterthanDBTDLforpreparingPUbyFP.Itcanbeattributedtothefactthatthecatalyst,stannouscaprylate,hastheloweractivitythanthatofDBTDL,42whichcouldobtainalongerpotlifeforFP.ThisfindingallowedustoperformpureFPrunswithoutsimultaneousoccurrenceofSP.
EffectoftheRelativeParametersRelatingtoFP.OneofthekeyfeaturesofpureFPisthatalldataonfrontvelocityversusreactiontimearewell-describedbyastraightandlinearfit.Moreover,thereisaTmaxvalueinthefunctionoffronttemperatureandfrontpositionduringtheFP.Con-versely,SPmayoccursimultaneously.
ThepositionofthethermalfrontasafunctionoftimeisgiveninFigure2for(a)purePUandEP/PUhybridnetworkswith(b)5wt%E44,(c)10wt%E44,and(d)15wt%E44.AsshowninFigure2,theexperimentaldataforallsetsofexperimentsarewell-fittedbystraightlines,meaningthatthepropagationofthepolymerizationfrontmovesataconstantvelocity.ThisisthefirststrongevidencethatpureFPisoccurring.Also,thevelocityoftheEP/PUhybridnetworksfrontdecreaseswithanincreaseoftheE44concentration.ThiscanbeexplainedbythefactthattheviscosityofhybridsincreasesasaresultofthereactionbetweentheE44andisocyanateinEP/PUhybridnetworks,whichcandecreasetheconvectionconductcausedbybuoyancy.FioriandMariani27havereportedthatdeviationsfromthelinearityaregenerallyobservedwhenasimulta-neousSPisoccurringduetoheatdispersioncausedbythemonomerfractionpolymerizedbySPandtotherelatedchangeofmediumviscosity.
(41)Dammann,L.G.;Carlson,G.M.U.S.Patent4,788,083,1988.
(42)Ocertel,G.PolyurethaneHandbook,2nded.;HanserPublishers:New
York,1993.
2162Chem.Mater.,Vol.18,No.8,2006Figure3.TypicalfronttemperatureprofileofEP/PUhybridnetworkspreparedbyFP.E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.
Figure4.FrontalvelocityofEP/PUhybridnetworkspreparedvs[catalyst]/[TDI]ratio.E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;toluene)10wt%.
FurtherevidencetosupportpureFPisthetemperatureprofile.AtypicaltemperatureprofileofEP/PUhybridnetworksisshowninFigure3.ThisexperimentwasdonewithE44)10wt%,[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol,[catalyst]/[TDI])1.0×10-3mol/mol,andtoluene)10wt%.Atemperatureincreasecanbeobservedonaccountofthehighlyexothermicreaction,andtheTmaxis94°C.Asaresultoftheconstanttemperaturevalueinzonesfarfromtheincominghotfront,thereisahorizontalpartofthecurve,meaningthatSPisnotoccurring.ThefronttemperatureprofileismoreevidencetorevealthatonlypureFPoccurs.
WestudiedthefrontvelocitydependenceonthecatalystconcentrationwithaconstantconcentrationofE44(10wt%)and[NCO]/[OH]/[epoxyvalue](1.4:1:1,mol/mol).Figure4isthecurveoffrontvelocityofEP/PUhybridnetworksversuscatalystconcentrationbyFP.Asexpected,thefrontvelocityincreaseswithhigherconcentrationsofcatalyst.FPcouldbeobservedfor[catalyst]/[TDI]between0.5×10-3and2.0×10-3mol/mol.Forlowercatalystconcentrations([catalyst]/[TDI]lessthan0.5×10-3mol/mol),nopropagat-ingfrontcouldbeachievedbecauseofheatloss.Conversely,for[catalyst]/[TDI]>2.0×10-3mol/mol,SPoccurred.Figure5isthecurveofTmaxofEP/PUhybridnetworksbyFPversuscatalystconcentrations.Anincreaseof[catalyst]/[TDI]from0.5×10-3to2.0×10-3mol/molcausedanincreaseofTmaxfrom86to105°C.Ourexperimentswereperformedundernonadiabaticconditions;forthisreason,theincreasedfrontvelocityreducedthetimeforheatloss.CharacterizationDataandComparisonbetweenSamplesPreparedbyFPandSamplesPreparedbyBP.ThepolymerstructureofEP/PUhybridnetworksisascer-tainedfromFT-IRspectra.Figure6showsFT-IRspectraof
Chenetal.
Figure5.TmaxofEP/PUhybridnetworksfrontpreparedvs[catalyst]/[TDI]ratio.E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;toluene)10wt%.
Figure6.FT-IRspectra(500-3500cm-1)ofEP/PUhybridnetworks.(a)EP/PUhybridnetworkssynthesizedbyFP,E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(b)EP/PUhybridnetworkssynthesizedbyBP,E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)70wt%.
Figure7.TGAspectraofpurePUandEP/PUhybridnetworkspreparedbyFP.(a)PurePUpreparedbyFP,[NCO]/[OH])1.4:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(b)EP/PUhybridnetworkspreparedbyFP,E44)15wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.
EP/PUhybridnetworkspreparedbyFPandBPrespectively,with[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol,E44)10wt%,and[catalyst]/[TDI])1.0×10-3mol/mol.AsisseeninFigure6,thebendingvibrationabsorptionpeaksoftheNsHgroupat1535cm-1andthestretchingvibrationabsorptionpeaksoftheCdOgroupat1730cm-1canbeobserved.However,thestretchingvibrationabsorptionpeaksoftheisocyanategroupat2356cm-1canalsobeobservedbecauseofexcessiveconcentrationofTDI.ThisallstronglyindicatesthattheproductsbyFPhavechemicalstructuressimilartothoseobtainedbyBP.40
TypicalTGAspectraforsamplesofpurePUandEP/PUhybridnetworkspreparedbyFPareshowninFigure7,eachofthemkeepingconstantaspecific[NCO]/[OH])1.4:1mol/mol,[catalyst]/[TDI])1.0×10-3mol/mol,andtoluene)10wt%.Bycomparison,inthetemperaturerangeofthefirstdegradationstep(113-270°Cataheatingrateof10
EpoxyResin/PolyurethaneHybridNetworksFigure8.TGAspectraofEP/PUhybridnetworkssynthesizedby(a)FPand(b)BP.(a)EP/PUhybridnetworkssynthesizedbyFP,E44)15wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(b)EP/PUhybridnetworkssynthesizedbyBP,E44)15wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)70wt%.
°C/min),theEP/PUhybridnetworksdegradeslightlyfasterthanpurePUbecauseofthedegradationofsomeuncon-vertedE44presentinthehybrids.Asamatteroffact,theonsettemperatureofdecomposition(113°C)ofE44wasreportedintheliterature.39ThesmallorganicmoleculestendtodegradebeforethePUpolymer,causingaslightweightlossinthehybrids.However,theEP/PUhybridnetworksshowhigherthermalresistancethanthatofpurePUinthetemperaturerangeofthedegradationstep(above270°Cataheatingrateof10°C/min),whichmightbeattributedtothepresenceofcross-linkingstructuresthroughcovalentbondsbetweenPUchainsandEPchains.ItclearlyshowsthattheEPincorporatedinthePUmatrixprovideshigherthermalstabilitiesofEP/PUhybridnetworksascribedtotheintermolecularhydrogenbondsofEP,whichimprovecohesionforceandhighregularsoftsegments.Figure8isaTGAthermogramspectracomparisonofthespectrumofEP/PUhybridnetworkspreparedbyFPcomparedwiththatofthenetworkspreparedbyBP.TheTGAspectraresultallowsustoconcludethatbothfrontandbatchsamplesshowsimilarthermalstabilities.
SEMimagesareusedtoinvestigatethesurfacemorphol-ogyofthePUandEP/PUhybridnetworksallsynthesizedbyFP.Figure9presentsthesurfacemorphologyofthePUandEP/PUhybridnetworkswithdifferentE44concentrations(5,10,and15wt%).Figure9aisthesurfaceofthepurePU.FromFigure9b-dwecanseethatboththeblackPUphaseandthewhiteEPphaseconstituteadistinct“net”structure.Theyshowisotropicandwell-pronouncedhomo-geneousnetworksoftwo-dimensionalplateletsofsimilardimensionsowingtocovalentcross-linkingbetweenEPchainsandPUchains.TheSEMmicrographsofEP/PUhybridnetworksalsorevealthatthehybriddomainsizeschangedwiththeE44concentration.Ascanbeseenfromtheimages,thedomainsizeofthesamplewith15wt%E44issmallerthanthatwith5wt%E44.Itcanbeconcludedthatthecross-linkingdensityofEP/PUhybridnetworksincreaseswiththeconcentrationofE44.ThesemicrographsprovidemoredirectevidencethattheE44uniformlydispersesinPUmatrixandformsanetworkstructureeventhoughnostirringisperformedinthiscase.
Chem.Mater.,Vol.18,No.8,20062163
Figure9.SEMimagesofthesurfacemorphorologiesofpurePUandEP/PUhybridnetworksallsynthesizedbyFP.(a)PurePUpreparedbyFP,[NCO]/[OH])1.4:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(b)EP/PUhybridnetworkspreparedbyFP,E44)5wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(c)EP/PUhybridnetworkspreparedbyFP,E44)10wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.(d)EP/PUhybridnetworkspreparedbyFP,E44)15wt%;[NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol;[catalyst]/[TDI])1.0×10-3mol/mol;toluene)10wt%.
Conclusions
ThefirstsynthesisofEP/PUhybridnetworksbyFPhasbeensuccessfullycarriedout.WehavefoundthatasolutionofE44,PPG,BD,TDI,stannouscaprylate([NCO]/[OH]/[epoxyvalue])1.4:1:1mol/mol,[catalyst]/[TDI])1.0×10-3mol/mol),andtoluene(10wt%)exhibitedapotlifeofmorethan3hattheambienttemperature(30°C),andinstantaneousSPdoesnotoccur.InagreementwithdataofotherpublishedFPsystems,theexperimentaldataforallFPexperimentsarewell-fittedbystraightlines,meaningthatthefrontspropagatewithconstantvelocities.ThefeaturesofEP/PUhybridnetworkspreparedfrontallyweresimilartothoseobtainedbyBPbutwereachievedinashorterreactiontime.FT-IRspectraofEP/PUhybridnetworksbyFPdisplaysthecharacteristicabsorptionpeaks,whicharealmostthesameasthoseofEP/PUhybridnetworksbyBP.TGAcharacterizationindicatesthatbothfrontandbatchsampleshadsimilarthermalstabilities.SEMimagesprovidedirectevidencethattheEPuniformlydispersedinthePUmatrixandformedacross-linkingnetworkstructureevenwithoutstirring.TheaboveresultsallowustoconcludethatFPcanbeexploitedasanalternativemeansforpreparationofEP/PUhybridnetworkswiththeadditionaladvantagesofhighvelocity,lowcost,andlowenergyascomparedwithtraditionalbatchmethods.
CM052391S
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务