您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页河南省南召县2021-2022学年度第一学期九年级期末调研测试数学试题

河南省南召县2021-2022学年度第一学期九年级期末调研测试数学试题

来源:五一七教育网
…○…………

河南省南召县2021-2022学年度第一学期期终九年级调研测试

8.已知3,y1,1,y2,5,y3,是抛物线y2x24xm上的点,则( ) A.y1y2y3

B.y2y1y3

C.y1y2y3

D.y1y2y3

数学试题 2022.1

………线………… __○___…____…__:…号…考_订____…___…___…:级…班_○___…___…____…:名…姓装___…____…___…_:校…学○…………内…………○…………注意事项:

1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题(每小题3分,共30分) 1.下列命题中,不正确的是( ) A.对角线相等的平行四边形是矩形

B.有一个角为60°的等腰三角形是等边三角形 C.直角三角形斜边上的高等于斜边的一半 D.正方形的两条对角线相等且互相垂直平分

2.不透明的袋子里共装有4个黑球和6个白球,这些球除了颜色不同外,其余都完全相同,随机从袋子中摸出一个球,摸到黑球的概率是( ) A.14

B.16

C.2

D.235

3.下列函数是y关于x的反比例函数的是( ) A.y1x

B.y13

C.y3xx

D.yx14

4.如图,在△ABC中,DE∥BC,S△ADE=S梯形DBCE,则DE:BC为( ) A.22 B.12

C.14

D.23

5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价

的百分率为( ). A.20%;

B.40%;

C.18%;

D.36%.

6.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教师前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是( )

A.

12

B.34

C.1

D.14

7.如图,在菱形ABCD中,DE⊥AB,cosA35,BE=2,则tan∠DBE的值是( ) A.12

B.2

C.52

D.55 第1页 9.某商店今年10月份的销售额是2万元,12月份的销售额是2.88万元,从10月份到12月份,该商店销售额平均每月的增长率为( ) A.44%

B.22%

C.20%

D.10%

10.如图是抛物线y(x1)2k的部分图象,其顶点为M,与y轴交于点(0,3),与x轴的一个交点为A,连接MO,MA.以下结论:

①常数k=3;

①抛物线经过点(-2,3); ①SOMA4;

①当x=320192020时,y0. 其中正确的是( )

A.①① B.①① C.①① D.①①

二、填空题(每小题3,共15分)

11.一元二次方程x①x①3①=3①x的根是____①

12.设a,b是方程x2+x﹣2021=0的两个实数根,则a2+2a+b的值为____. 13.如图所示,某商场要在一楼和二楼之间搭建扶梯BC,已知一楼与二楼之间的地面高度差为3.5米,扶梯 BC的坡度i3:3,则扶梯BC的长度为

_________米.

14.如图,四边形ABCD是矩形,AB=2,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是_____.

15.如图,在三角形ABC中,①BAC=90°,AC=12,AB=10,D是AC上一动点,以AD为直径的①O交BD于点E,则线段CE的最小值是___.

第2页

三、解答题(8小题,共75分)

16.(10分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值. 17.(9分)已知:x,y为实数,且yx11x3,化简:y3y28y16. 18.(10分)已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0). (1)求证:方程总有两个实数根;

(2)若方程有两个不相等的负整数根,求整数a的值.

19.(9分)如图,AB=AC,CA平分①BCD,E点在BC上,且①BAE=①CAD=90°,求证:CD=BE.

20.(9分)如图,在RtABC中,BAC90,C30,以边上AC上一点O为圆心,OA为半径作O,O恰好经过边BC的中点D,并与边AC相交于另一点F.

(1)求证:BD是O的切线.

(2)若AB3,E是半圆AGF上一动点,连接AE,AD,DE.填空: ①当AE的长度是________时,四边形ABDE是菱形; ②当AE的长度是___________时,ADE是直角三角形.

21.(9分)在RtABC中与RtDCE中,ACBDCE90,BACDEC30,ACDC3,将RtDCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.

(1)观察猜想

如图1,当点D与点A重合时,CF与CG的数量关系是__________,位置关系是__________; (2)类比探究

当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明

第3页

理由.

(3)问题解决在RtDCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.

22.(9分)如图,已知反比例函数y1=kx的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).

(1)求反比例函数和一次函数的表达式; (2)求△OAB的面积;

(3)直接写出y2>y1时自变量x的取值范围. 23.(10分)问题探究

(1)如图1,AB是半圆O的直径,AB=8.P是AB上一点,且PB=2PA,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP、CF⊥BP,垂足分别为E、F.求线段CF的长. 问题解决

(2)如图2,是某公园内“青少年活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.在AB上任取一点P,连接CP并延长,交⊙O于点D,连接AD、BD.过点P分别作PE⊥AD、PF⊥BD,垂足分别为E、F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2). ①求y与x之间的函数关系式;

②按照“青少年活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.当AP=30m时,试求室内活动区(四边形PEDF)的面积。

第4页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务