43
EffectsofDelayedFeedbackonKuramotoTransition
DenisS.GoldobinandArkadyPikovsky
DepartmentofPhysics,UniversityofPotsdam,Potsdam,Germany
(ReceivedJuly4,2005)
WedevelopaweaklynonlineartheoryoftheKuramototransitioninanensembleofgloballycoupledoscillatorsinpresenceofadditionaltime-delayedcouplingterms.Weshowthatalineardelayedfeedbacknotonlycontrolsthetransitionpoint,buteffectivelychangesthenonlineartermsnearthetransition.Apurelynonlineardelayedcouplingdoesnoteffectthetransitionpoint,butcanreduceorenhancetheamplitudeofcollectiveoscillations.
§1.Introduction
AtransitiontocollectivesynchronyinanensembleofgloballycoupledoscillatorsisknownastheKuramototransition.3)Animportantapplicationofthetheoryiscollectivedynamicsofneuronalpopulations.Indeed,synchronizationofindividualneuronsisbelievedtoplaythecrucialroleintheemergenceofpathologicalrhythmicbrainactivityinParkinson’sdisease,essentialtremor,andepilepsies;adetaileddiscussionofthistopicandnumerouscitationscanbefoundinRefs.2),4)and8).Oneapproachtosuppresssuchanactivityistoapplytothesystemanegativefeedbackloop.5)–7)
ThegoalofthispaperistodevelopaweaklynonlineartheoryoftheKuramototransitioninthepresenceoflinearandnonlineartime-delayedcouplingterms.WeheavilyrelyinouranalysisonthecorrespondingtreatmentofthesystemwithoutdelaybyCrawford.1)
§2.
Fromlimitcyclesystemstophasemodels
Hereweintroduceourbasicmodel—anensembleofautonomousoscillatorssubjecttodifferenttypesofglobalcoupling.WetakeindividualoscillatorsasVanderPolonesandwritethemodelas
√2
)x˙+ωx=22ωiξi(t)+εF(x,y),(2.1)x¨i−µ(1−x2iiiiwhereξi(t)isaδ-correlatedGaussiannoise:ξi(t)ξj(t−t)=2Dδijδ(t).The
ensembleaveragesaredefinedas
N1x=xj,
N
j=1
N
˙j1x
y=.
Nωj
j=1
Inthereductiontophaseequationsweusethesmallnessofparametersµandε,
andsupposethenaturalfrequenciesωitobedistributedinarelativelyclosevicinityofthemeanfrequencyω0≡N−1Nj=1ωj.Becauseµωi,thesolutionofthe
44D.S.GoldobinandA.Pikovsky
autonomousVanderPoloscillatorcanbewrittenasxi(t)≈Ai(t)cos(ϕi(t))where
˙i=ωi.Becauseεµ,couplingdoesnotaffecttheonthelimitcycleAi≈2andϕ
amplitude(whichremains≈2),butonlythephase.Itisconvenienttointroducethecomplexorderparameter
11iϕj(t)
eR(t)=|R|eiθ(t)=(x+iy)=
2N
j
(2.2)
andtorepresenttheglobalcouplingintermsofR.Theabsolutevalueoftheorder
parameterisclosetozerofornearlyuniform,nonsynchronizeddistributions,andreaches1forstronglysynchronizedstates.
Belowwewillbeinterestedinlinearcouplingwithandwithouttimedelay,6),7)andinanonlinearcoupling:5)
εF(x,y)=2ω0εy(t)+2ω0εfy(t−T)+
d2(x(t−T))(Kxx(t)+Kyy(t)).dt
Asaresult,thephaseequationsfortheoscillatorsread
NN
εfε
sin(ϕj(t)−ϕi(t))+sin(ϕj(t−T)−ϕi(t))ϕ˙i=ωi+NN
j=1
j=1
+εof|R|2(t−T)|R|(t)sin[2θ(t−T)−θ(t)−ϕi(t)+ν]+ξi(t),
(2.3)
whereεofeiν=2(Kx+iKy).Herethreecouplingparametersdescribedifferenttypes
ofcoupling:εdescribescollectivelinearcouplingwithoutdelay,asintheoriginalKuramotomodel;εfdescribeslinearcouplingwithdelay,ashasbeenproposedin6)and7);εofdescribesnonlinearcouplingwithdelayashasbeenproposedin5).
§3.
Linearfeedback:thermodynamiclimitandstability
Westartwithaconsiderationofanensembleofoscillatorswithlinearcouplings,i.e.inthisandthenextsectionsweconsider(2.3)withεof=0.Inthethermody-namiclimitN→∞wecanintroduceadistributionofnaturalfrequenciesg(ω)andrewritesystem(2.3)as
ϕ˙(ω)=ω+ε
+εf
+∞
g(ω)sinϕ(ω,t)−ϕ(ω,t)dω
(3.1)
−∞+∞
g(ω)sinϕ(ω,t−T)−ϕ(ω,t)dω+ξ(ω,t).
−∞
Forastatisticaldescriptiononeintroducesadistributiondensityρ(ω,ϕ,t)(nor-2π
malizedas0ρ(ω,ϕ,t)dϕ=1)thatisgovernedbytheFokker-Planckequation:
∂∂2ρ∂ρ+(ρv)−D2=0,∂t∂ϕ∂ϕ
(3.2)
EffectsofDelayedFeedbackonKuramotoTransition
where
v(ω)=ω+ε
+εf
0
45
2π
dθ
+∞
dωg(ω)sin(θ−ϕ)ρ(ω,θ,t)
(3.3)
02π
dθ
−∞+∞
dωg(ω)sin(θ−ϕ)ρ(ω,θ,t−T).
−∞
Theorderparameterintroducedin(2.2)nowtakestheform
+∞2π
1iϕj(t)
e=dωg(ω)dϕρ(ω,ϕ,t)eiϕ.R(t)=N−∞0
j
(3.4)
Hereweshortlydiscussalinearstabilityanalysisoftheabsolutelynonsynchro-nousstateρ0=21π.Infinitesimalperturbationsρ1ofthisstatearegovernedbythe
linearizationofEq.(3.2)
∂v1∂ρ1∂ρ1∂2ρ1+ρ0+v0−D=0∂t∂ϕ∂ϕ∂ϕ2with
∂v1
=−ε∂ϕ
02π
(3.5)
dθdθ
+∞
0
−εf
Substitutingρ1=differentck:
+∞
−∞
2π
−∞+∞−∞
dωg(ω)cos(θ−ϕ)ρ1(ω,θ,t)dωg(ω)cos(θ−ϕ)ρ1(ω,θ,t−T).
(3.6)
kck(ω)e
ikϕ+λt
(k=0),onefindsindependentequationsfor
(3.7)
ε+εfe−λT
(δk,1+δk,−1)Ck,(λ+ikω+Dk)ck(ω)=
2
2
ε+εfe−λT
C1.(3.8)c1(ω)=
2(λ+D+iω)
Multiplyingthisequationbyg(ω)andintegratingoverω,onefindsthatthespectrumisformedbytherootsofthe“spectralfunction”Λ(λ)
ε+εfe−λT+∞g(ω)dω
=0.(3.9)Λ(λ)≡1−
2−∞D+λ+iω
+∞+∞−1Generally,−∞g(ω)(D+iω)dω=−∞ωg(ω)(D2+ω2)−1dω=0;there-forerealrootsofΛ(λ)(includingλ=0)arenotadmittedandonlyonecomplexroot
λ=−iΩwiththecorrespondingmodeρ1=α(ω)ei(ϕ−Ωt)+ccdetermineslinearsta-bility.FromthelinearanalysiswethusexpectaHopfbifurcationforthetransitiontosynchrony.+∞
Inthedegeneratedcase−∞ωg(ω)(D2+ω2)−1dω=0,arelationΛ∗(λ)=Λ(λ∗)holds,thenrealrootsareadmittedandcomplexrootsappearinpairs(λ,λ∗).Weexpectthatinrealapplicationsthedegeneracyofthefrequencydistributionisabsent,sowedonotconsiderthissituationbelow.
whereCk=onefinds
g(ω)ck(ω)dω.Modeswith|k|=1alwaysdecaywhilefork=1
46D.S.GoldobinandA.Pikovsky
§4.
Weaklynonlinearanalysis
Inthissectionweperformaweaklynonlinearanalysisofthesynchronizationtransition,consideringεasabifurcationparameter.Wewriteε=ε0+κ2ε2whereε0isthecriticalvalueofεandκisasmallparameter,andrepresenttheprobabilitydistributionρ(x,t)asρ0+κρ1+κ2ρ2+κ3ρ3+....Assumingρ1=α1(ω,t2,t4,...)ei(ϕ−Ωt0)+cc(heretkare“slowtimes”)andsubstitutingthisinEq.(3.2)weobtainintheorderκ2(therearenoseculartermsinthisorder):
∂∂2ρ2∂v2∂ρ2∂ρ2
+(ρ1v1)+v0−D+ρ0=0,
∂t0∂ϕ∂ϕ∂ϕ∂ϕ2where
2π
(4.1)
i(θ−Ωt)
iΩT0
dθdωg(ω)sin(θ−ϕ)α1(ω)ε0+εfe+ccv1=e0−∞
=iπε0+εfeiΩTA1ei(ϕ−Ωt0)+cc,(4.2)
+∞
andwehaveintroducedAj≡−∞αj(ω)g(ω)dω.Notethatfrom(3.8)itfollowsthat
ε+εfe−λT
A1.(4.3)α1(ω)=
2(λ+D+iω)
Thisgivesthe“drivingterm”in(4.1):
∂∂iΩTi2(ϕ−Ωt0)
(ρ1v1)=iπε0+εfe+cc+...α1(ω)A1e∂ϕ∂ϕ
+∞
=−2πε0+εfeiΩTα1(ω)A1ei2(ϕ−Ωt0)+cc.
SearchingforsolutionofEq.(4.1)intheformρ2=α2(ω,t2,t4,...)ei2(ϕ−Ωt0)+cc,weobtain,using(4.3),
2πε0+εfeiΩTA22πε0+εfeiΩTA1α1(ω)1
=.(4.4)α2(ω)=
−i2Ω+i2ω+4D2(D+i(ω−Ω))(2D+i(ω−Ω))
Intheorderκ3ofEq.(3.2),seculartermsappear:
∂v3∂ρ3∂∂2ρ3∂ρ3∂ρ1++(ρ1v2+ρ2v1)+v0−D+ρ0=0.(4.5)2∂t∂t2∂ϕ∂ϕ∂ϕ∂ϕ
2π
Notethatv2=0because0eiϕρ2(ω,ϕ,t)dϕ=0.Calculationofotherseculartermsyields
2π+∞
dθdωg(ω)sin(θ−ϕ)ρ1(ω,θ,t)v3=vρ3+ε20−∞
2π+∞,t,...)∂α(ω12
dθdωg(ω)sin(θ−ϕ)(−T)ei(θ−Ω(t−T))+cc+εf
∂t20−∞
∂A1
ei(ϕ−Ωt0)+cc,=vρ3+iπε2A1−εfeiΩTT∂t2
EffectsofDelayedFeedbackonKuramotoTransition
wherevρ3=
2π
0
47
dθ
+∞
−∞
dωg(ω)sin(θ−ϕ)(ε0ρ3(ω,θ,t)+εfρ3(ω,θ,t−T))and
∗∂∂−iΩTi(ϕ−Ωt0)
(ρ2v1)=−iπε0+εfe+cc+...A1α2(ω)e∂ϕ∂ϕ
i(ϕ−Ωt0)
+cc+....=πε0+εfe−iΩTA∗1α2(ω)e
(Here“...”denotesnon-secularterms.)Collectingallsecularterms,wecanwrite
themas
εfeiΩT∂A1∂α1(ω)ε2i(ϕ−Ωt0)
T−A1++πε0+εfe−iΩTA∗+cc.1α2(ω)e∂t222∂t2
(4.6)
Nowwehavetowriteouttheconditionoforthogonalityofthesetermstothesolu-tionsoftheconjugatedproblem,i.e.theconditionthatthesecularpartof“driving”vanishes.Assoonasthescalarproductofτ-time-periodicfieldss(ω,ϕ,t)andc(ω,ϕ,t)isdefinedby
2π+∞
dϕτdt∗
s(ω,ϕ,t)c(ω,ϕ,t),dωg(ω)(4.7)s,c≡
2π0τ−∞0theconjugatedproblemreads
+∞
ε0+εfe−λT∂2
(δk,1+δk,−1)g(ω)ck(ω)dω(4.8)−−ikω+Dkck(ω)=
∂t2−∞andhasasolution
ei(ϕ−Ωt)
.
D−i(ω−Ω)
(4.9)
Finally,theorthogonalitycondition,i.e.thevanishingofthescalarproductof(4.9)and(4.6),yieldstheweaklynonlinearamplitudeequation:
+∞
εfeiΩT∂A1∂α1(ω)ε2g(ω)dω
T−A1++πε0+εfe−iΩTA∗1α2(ω)D+i(ω−Ω)∂t22∂t22−∞
=0.
+∞g(ω)dωi
SubstitutinghereforαjandintroducingafunctionG(z)=2π−∞ω−zweobtain
˙1=λ2(ε0,Ω)A1−P(ε0,Ω)A1|A1|2,A
whereλ2isthelineargrowthrate
λ2(ε,Ω)=
andP(ε,Ω)=
iπ(ε+εf
2eiΩT)G(Ω
(4.10)
ε−ε0
+iD)+εfTeiΩT
(4.11)
π2ε
+iD)−G(Ω+i2D)+G(Ω+iD))+εf
.(4.12)
−2
DiDG(Ω+iD)+π−1DεfeiΩTT(ε+εfeiΩT)
2
eiΩT(iDG(Ω
48D.S.GoldobinandA.Pikovsky
Equation(4.10)andtheexpressions(4.11),(4.12)arethemainresultofouranalysis.Theygiveafulldescriptionoftheeffectofthedelayedglobalfeedbackonthesynchronizationtransitionintheensembleofoscillators.Thelinearpart(4.11)hasalreadybeendiscussedin6),andtheexpression(4.12)completesthedescriptionofthesynchronizationtransition.HavingdeterminedtheamplitudeA1from(4.10),onecanfindtheestablishingprobabilitydistribution
iΩTπε+εe10f1+A1(t)ei(ϕ−Ωt)+ccρ(ω,ϕ,t)=2πD+i(ω−Ω)
2
iΩTε0+εfei2(ϕ−Ωt)
A2+cc+O(A3+1(t)e1),(D+i(ω−Ω))(2D+i(ω−Ω))
(4.13)
π2
andtheorderparameter
iΩt
R(t)=2πA∗+O(A31e1).
§5.Anexample:Lorentzdistributionofnaturalfrequencies
Thegeneralexpressions(4.11)and(4.12)abovecanbeconsiderablysimplified
fortheLorentziandistribution
γ
g(ω)=,(5.1)22π((ω−ω0)+γ)whereγisacharacteristicwidthofthedistributionandω0isthemeanfrequency.
Inthiscase+∞
i1g(ω)dωi
=,G(z)=
2π−∞ω−z2πω0−iγ−zwherezisassumedtobepositive(thisholdsforD>0).
Firstweobtainexplicitexpressionsforspectrumofthelinearproblem.Equa-tion(3.9)takestheform
iε+εfe−βT+iΩT
1+=0,
2(ω0−Ω−i(γ+D+β))wherewehavesubstitutedλ=β−iΩ,βandΩbeingtherealgrowthrateandthefrequency.Separatingrealandimaginaryparts,onecanfind
εf
ε=2(γ+D+β)−εfe−βTcosΩT.(5.2)Ω=ω0−e−βTsinΩT,
2
Thethresholdvalueε0isdeterminedbyβ=0.Substitutingtheexpressionsabovein(4.11)and(4.12)weobtain
ε2
,(5.3)λ2(ε0,Ω)=iΩT2+εfTe
4
.(5.4)P(ε0,Ω)=iΩTiΩT(ε0+εfe+2D)(2+εfTe)
EffectsofDelayedFeedbackonKuramotoTransition
|R||R0|49
10 1 0.1-0.1-0.05εf 0 0.05 0.1 0 1 2 3 4 5 6 7 8TFig.1.Effectofdelayedfeedbackontheorderparameterforω0=1,γ=D=0.01.
λ2ThestationaryamplitudeA1iscalculatedaccordingto(4.10)|A1|2=P.Todemonstrate,howthedelayedfeedbackaffectstheamplitude,wepresentinFig.1
R|
whereR0istheorderparameterintheabsenceofdelayedfeedbacktheratio||R0|forthesameclosenesstothetransitionpointε2.
§6.Nonlineardelayedfeedback
Inthissectionweconsiderapurelynonlineardelayedfeedbackintheensembleofoscillators.Wesetεf=0inEq.(2.3)andwritethebasicmodelas
Nε
sin(ϕj(t)−ϕi(t))ϕ˙i=ωi+N
+εof|R|(t−T)|R|(t)sin(2θ(t−T)−θ(t)−ϕi(t)+ν)+ξi(t).
j=12
(6.1)
Similarlytothepreviouscase,inthethermodynamicallimitN→∞onecanwrite
∂∂2ρ∂ρ+(ρv)−D2=0,∂t∂ϕ∂ϕ
where
v(ω)=ω+ε
2π
(6.2)
dϕ
+∞
+εof|R|(t−T)|R|(t)sin(2θ(t−T)−θ(t)−ϕ+ν).
02
−∞
dωg(ω)sin(ϕ−ϕ)ρ(ω,ϕ,t)
(6.3)
50D.S.GoldobinandA.Pikovsky
Thelinearproblemisthesameasinthepreviouscasewhereonesetsεf=0.Thereforeassoonasg(ω0+∆ω)=g(ω0−∆ω),criticalperturbationseitherhavethefrequencyω0oraredegenerate:theyappearinpairsω0−∆ω,ω0+∆ω(seediscussionbyCrawford1)).Werestrictourselvestonon-degeneratecaseonly.Consideringnearlycriticalbehaviorofsmallperturbationρ1=α1(ω,t2,t4,...)ei(ϕ−Ωt0)+cc,onecanwritedownfromEq.(6.2)intheorderκ2(thereisnoseculartermsinthisorder)Eq.(4.1)with
(6.4)v1=iπε0A1ei(ϕ−Ωt0)+cc.NowfromEq.(3.8),α1(ω)=
ε0A1
.Therefore
2(D+i(ω−Ω))
2i2(ϕ−Ωt)0A1e∂
(ρ1v1)=−πε2+cc.0∂ϕD+i(ω−Ω)
Searchingforρ2intheformρ2=α2(ω,t2,t4,...)ei2(ϕ−Ωt0)+ccwefind
2πε20A1.α2(ω)=
2(D+i(ω−Ω))(2D+i(ω−Ω))
Intheorderκ3Eq.(4.5)withv2=0and
v3=iπ(ε0A3+ε2A1)ei(ϕ−Ωt0)+cc
+εof|R|2(t−T)|R|(t)sin(2θ(t−T)−θ(t)−ϕ+ν)
=iπ(ε0A3+ε2A1)ei(ϕ−Ωt0)+cc+εofR2(t−T)R∗(t)eν−ϕ
iΩtwegetisvalid.SubstitutingR1=2πA∗1e
2∗2i2Ω(t−T)iΩ(t−2T)
R1(t−T)R1(t)=8π3A∗A1e−iΩt=8π3|A1|2A∗.1e1e
Thereforeand
v3=...−8πεof|A1|A1e
32
i(ϕ−Ωt−ν+2ΩT)
∂v322i(ϕ−Ωt−ν+2ΩT)
ρ0=...−4πεof|A1|A1e,∂ϕ
where“...”denotesthetermswhichdonotcontributetothesecularpartofthe
∂
(ρ2v1)canbetakenfrom§4,anditscontributiontoP(ε,Ω)equation.Theterm∂ϕisgivenbytheformula(4.12)withεf=0.Summinguptheseresults,onecanfindthatEq.(4.10)holdswith
λ2(ε,Ω)=
ε2
,(6.5)2iπεG(Ω+iD)
i4πεofei(2ΩT−ν)G(Ω+iD)−G(Ω+2iD)π2ε2
1++.(6.6)P(ε,Ω)=DiDG(Ω+iD)εG(Ω+iD)
EffectsofDelayedFeedbackonKuramotoTransition
Theresultingprobabilitydensityreads
1πε0A1(t)
ρ(ω,ϕ,t)=1+ei(ϕ−Ωt)+cc
2πD+i(ω−Ω)
2π2ε20A1(t)ei2(ϕ−Ωt)+cc+O(A3+1)(D+i(ω−Ω))(2D+i(ω−Ω))
51
(6.7)
iΩt+O(A3).andtheorderparameterisR(t)=2πA∗1e1
Asaparticularexampleweconsider,likein§2,theLorentziandistributionofnaturalfrequencies(5.1).ThecharacteristicequationΛ(λ)=0takestheform
ε−2(γ+D)=2(λ−iω0)
(6.8)
andhasonlyoneroot.Thebifurcationofthenon-synchronousstateisaHopfoneatε0=2(γ+D)withthefrequencyΩ=ω0(seediscussionbyCrawford1)).SettingΩ=ω0in(6.5)and(6.6),wefind
λ2(ε0,ω0)=
ε2,2
P(ε0,ω0)=
1
−4π2εofe−iν(γ+D).
2D+γ
(6.9)
TherealpartofPdetermines,accordingto(4.10),theamplitudeoftheestablishingcollectivemode|A1|2=λ2(P)−1,with
P(ε0,ω0)=
1
−4π2εof(γ+D)cos(ν).
2D+γ
Onecanseethatdependingonthevalueofν,theamplitudedecreasesorincreasesduetoadditionalnonlinearfeedback.Moreover,forstrongenoughfeedbackPcanbecomenegative,whatmeansasubcriticalKuramototransition.Also,anonlinearshiftoftherotationfrequencyofRinthecounterclockwisedirectionappears
ω2=(P)|A1|2=
ε2tanνε2(P)=.
2(P)2[4π2εof(2D−γ)(D+γ)cosν]−1−1
§7.
(6.10)
Conclusion
Inthispaperwehavedevelopedaweaklynonlinearanalysisoftheeffectof
delayedfeedbackontheKuramototransition.WehaverestrictedourattentiontothemostgeneralcaseofHopfbifurcationandhavenotconsideredothertypesoftransitionthatoccurundercertainsymmetries.Theanalysisis,ofcourse,restrictedtoavicinityofthetransitionpoint,moreover,thebasicphase-couplingmodelas-sumesthatalltypesofcouplingareweak.Astrongcouplingcaseshouldbestudiednumerically.
Acknowledgements
WewouldliketothankM.Rosenblum,O.PopovychandP.Tassforusefuldiscussions.
52D.S.GoldobinandA.Pikovsky
References
1)J.D.Crawford,J.Stat.Phys.74(1994),1047.
2)D.Golomb,D.HanselandG.Mato,Neuro-informaticsandNeuralModeling,Handbookof
BiologicalPhysics,Vol.4,ed.F.MossandS.Gielen(Elsevier,Amsterdam,2001),p.887.3)Y.Kuramoto,LectureNotesinPhys.39,ed.H.Araki(Springer,NewYork,1975),p.420.4)EpilepsyasaDynamicDisease,ed.J.MiltonandP.Jung(Springer,Berlin,2003).5)O.Popovych,Ch.HauptmannandP.A.Tass,Phys.Rev.Lett.94(2005),1102.6)M.G.RosenblumandA.S.Pikovsky,Phys.Rev.Lett.92(2004),114102.7)M.RosenblumandA.Pikovsky,Phys.Rev.E.70(2004),041904.
8)P.A.Tass,PhaseResettinginMedicineandBiology,StochasticModellingandDataAnaly-sis(Springer-Verlag,Berlin,1999).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务