www.elsevier.nl/locate/strusafe
Directionalmethodsforstructuralreliabilityanalysis
JinsuoNie,BruceR.Ellingwood*
DepartmentofCivilEngineering,TheJohnsHopkinsUniversity,Baltimore,MD21218,USA
Abstract
Directionalsimulationreducesthedimensionofthelimitstateprobabilityintegralbyidentifyingasetofdirectionsforintegration,integratingeitherinclosed-formorbyapproximationinthosedirections,andestimatingtheprobabilityasaweightedaverageofthedirectionalintegrals.Mostexistingmethodsidentifythesedirectionsbyasetofpointsdistributedontheunithypersphere.Theaccuracyofthedirectionalsimulationdependsonhowthepointsareidenti®ed.Whenthelimitstateishighlynonlinear,ortheinherentfailureprobabilityissmall,averylargenumberofpointsmayberequired,andthemethodcanbecomeinecient.ThispaperintroducesseveralnewapproachesforidentifyingdirectionsforevaluatingtheprobabilityintegralÐSphericalt-design,SpiralPoints,andFeketePointsÐandcomparesthefailureprobabilitieswiththosedeterminedinanumberofexamplesinpreviouslypublishedwork.Oncethesepointshavebeenidenti®edforaprobabilityintegralofgivendimension,theycanbeusedrepeatedlyforotherprobabilityintegralsofthesamedimensioninafashionanalogoustoGaussQuadrature.#2000ElsevierScienceLtd.Allrightsreserved.
Keywords:Directionalsampling;Engineeringmechanics;Limitstates;MonteCarlosimulation;Probability;Relia-bility;Statistics;Structuralengineering
1.Introduction
Practicalstructuralreliabilityanalysesoftenrequiretheevaluationofthefailureprobabilityforlimitstatesinvolvingavector,X,offrom5to20randomvariablesdescribedbyajointprob-abilitydensityfunctionfXx.GiventhelimitstatefunctionGx0,de®nedsuchthatsafedomainsfxjGxb0gandfailuredomainffxjGx`0g,thefailureprobabilityisgivenby
PffXxdxI
f
Ingeneral,thisintegralishardtoevaluate,particularlyinhigh-dimensionalspace.Acommonapproachis®rsttotransformtherandomvectorXX1YX2YFFFYXdtoanindependent
*Correspondingauthor.
0167-4730/00/$-seefrontmatter#2000ElsevierScienceLtd.Allrightsreserved.PII:S0167-4730(00)00014-X
234J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
standardnormalrandomvectorUU1YU2YFFFYUdbytheRosenblatttransformationUTX,andthenapply®rst-orderorsecond-orderreliabilitymethods(FORM,SORM),MonteCarlosimulation,orothermethods.WiththeRosenblatttransformation,thelimitstatefunctioninthespaceofindependentstandardnormalvariablesmaybecomeahighlynonlinearfunction.Forhighlynonlinearstructuralcomponentandsystemlimitstates,FORMandSORMmaynotbesucientlyaccurate[1].
DirectionalsimulationandimportancedirectionalsimulationhavebeenstudiedbyDitlevsen,etal.[2],andMelchersetal.[3,4],amongothers.Thedirectionalsimulationmethodinvolvesgeneratinguniformlydistributeddirectionvectorsandperformingaone-dimensionalintegrationalongeachdirection.Theimportancedirectionalsimulationmethodusestheimportancesam-plingtechniquetoconcentratethedirectionvectorsintheregionsofinterest.Althoughdirec-tionalsimulationmethodsarerelativelyecientcomparedtootherMonteCarlosimulationapproaches,thesemethodsmaydiminishinaccuracywhenthelimitstateGuishighlynonlinearunlessthenumberofsamplingdirectionsislarge.Moreover,forasystemreliabilityanalysisthatissupportedby®niteelementmodeling,thenumberofdirectionsrequiredtolimittheerrorinPfmustbeheldtoaminimumfortheanalysistobeperformedeciently.
k[6],KatsukiandFrangopol[7]DevelopinganideaproposedbyKendall[5]andDea
approximatedtheactuallimitstatesurfaceintheindependentstandardnormalspacebyaseriesofhypersphericalsegments,eachhavingaradiusdescribedbya12distribution.Thefailureprobabilitywasthenapproximatedbythesumofthefailureprobabilitiesassociatedwiththosesegmentsapproximatingthelimitstatehypersurface.ThisHyperspaceDivisionMethod(HDM)canachievefairaccuracyinapproximatingthefailureprobabilityforbothstructuralcomponentsandsystems,thelatterofwhichmayhavehighlynonlinearlimitstateswithmultiplelocalextrema.ImprovementstoenhancetheconvergenceandeciencyoftheHDMforrealisticsys-temswerediscussedinamorerecentpaperbythesameauthors[8].
ThekeyideaindirectionalsimulationandtheHDMisthesame:(a)toseekasetofpoints(asdirections)uniformlydistributedontheunithypersphereeitherbysimulationorbyconstruction(inwhichallpointsareobtainedfromsomespeci®edformula),and(b)toperformthereliabilityanalysisasasequenceofone-dimensionalintegrationsinthedirectionsthusidenti®ed.Thisideaisdevelopedfurtherinthispaper,inwhichadirectionalmethodisproposedthatyieldsaccuratefailureprobabilitiesofcomponentsandsystemsdescribedbylimitstatesinvolvingnonlinearitiesandlocalextrema.Oncesuchpoints(directions)aredetermined,theycanbeusedrepeatedlyfordirectionalintegrationinananalogywithGaussianQuadrature,ratherthanhavingtoberegen-eratedforeachreliabilityanalysis.Numericalexamplesillustratetheeciencyofthemethodincomparisonwithothermethods.2.Fundamentalprocedure
Alldirectionalmethodsrequireidenti®cationofdirectionsalongwhichtheintegrationisper-formedinclosedform,bysimulationornumericalmeans.Intheindependentstandardnormalspace,theintegralalongeachdirectionisobtainedexactlybyutilizingthe12distribution.Tosummarize,givenahyperspacewithdindependentstandardnormalvariablesUU1YU2YFFFYUd,thenewrandomvariableZ2,de®nedby
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
22
Z2U21U2ÁÁÁUd
235
P
isachi-squarerandomvariablewithddegreesoffreedom.Ifthelimitstatefunctionisahyper-sphereofradiusRinthehyperspace,then
22222GduÀu21Àu2ÀÁÁÁÀudRÀzR0
Q
andthefailureprobabilityassociatedwiththishyperspherecanbeobtainedexactly[9]:
2PfPGdu401À12dR
R
Fig.1showsatwo-dimensionalillustrationofwiththelimitstatesimpli®edtoacircular
22
functionG2uÀu21Àu2R0XSubdomainsfiandsiareradiallysplitfromfandsrespectively.LetthearclengthonthelimitstateassociatedwithfibeAfi,andthetotallengthofthecircle(areainhigherdimensions)beA,whereAisthesurfaceareaofahypersphereind-dimensionspace.Aisgivenby
V
%da2dÀ1bbbifdiseven`dda23r
AS
bddÀ1a2bdÀ1a23dÀ1bXd2%rifdisodd
d3Thenthefailureprobabilityassociatedwithfiis
2
PfiPU&fi1À12dRAfiaA
T
AlthoughtheweightAfiaAallowsonetodividethehypersphereunevenly(itleadstoanadaptivedivisionscheme),itisdicultto®ndAfiwhend54.Ifthehypersphereisradiallydividedevenly,thecontributionofeachsubdomain,Pfi,becomessimply[7]
22
Fig.1.Failuredomainandsegmentsforlimitstatesu21u2R(after[7]).
236J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
2
Pfi1À12dRam
U
wheremisthetotalnumberofsubdomains.Notethatmmayhavevariousinterpretationsindierentpoint-generatingmethods,suchasthenumberofsamplingdirectionsindirectionalsimulation,thenumberofsubdomainsintheHDM,andthenumberofpointsintheSphericalt-design,SpiralpointsandFeketepointsmethodstobedescribedsubsequently.Inthemoreusualcasewherethelimitstateisahypersurfaceratherthanahypersphere(Fig.2),thehypersurfaceisapproximatedbyaseriesofhypersphericalsegments,eachwithitscentralpointQilyingontheactuallimitstate.ThefailureprobabilityofanysubdomainfiisapproximatedbyEq.(7b),
2
Pfi1À12dRiam
U
whereRiradiusofthehyperspheresegmentofsubdomaini,Ri50.
ThetotalfailureprobabilityPfisthesummationoverallsubdomains,i.e.
Pf%
mi1
Pfi
mi1
2
1À12dRiam
V
TheRi'scanbeobtainedthroughnumericalmethods(e.g.[10]).Thisapproacheliminatesthe
limitationsofFORMandSORMthatoccurwhennonlinearitiesinGduormultiplelocalextremumpointsoftheprobabilitydensityfunctionexistonthelimitstatehypersurface,becauseitapproximatesthefailuresurfaceoverawiderdomainofxthandoFORM/SORM.System
Fig.2.LimitstateGu0anditsapproximationwithsphericalsegments(after[7]).
\"
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249237
reliabilityproblemsmaybesolvedinthesamewayascomponentproblemsexceptthatoneneedsaspecialwaytocalculatetheRi's.Givenklimitstatefunctionsdescribingcomponent(ormodal)failures,
@Ri
minRikforseriessystemsmxRik
kk
forprllelsystems
W
Forsystemsthatarenotmodeledaseitherseriesorparallelsystems,onemightutilizetheresponsesurfacedeterminedfroma®niteelementanalysisasthelimitstatesurface.
Eq.(8)istantamounttoanequallyweightedaverageofprobabilitiesevaluatedinmdirections.Itsaccuracyiscontingentongettingevenlydistributedpointsonaunithypersphere.In2-dimensionalspace,thisistrivial;indimensionsof3andhigher,itisincreasinglydicult.Ourinterestliesmainlyind53.
3.Implementationofdirectionalmethods3.1.Directionalsimulation
k[6]wasamongthe®rstwhostudiedthedirectionalsimulationmethodasatoolforDea
evaluatingmultidimensionalnormalprobabilityintegrals.ItisaveryecientmethodofMonteCarlosimulation,providedthatradiusvectorstothelimitstatesurfaceinanydirectioncanbeobtainedeciently[2].ThefailureprobabilityformulationissimilarasinEq.(8)exceptthatmnowisthesamplesize.Directionalsimulationmixessimulationin(dÀ1)dimensionswithnumericalintegrationinonedimension.Togetacceptable(withrespecttoevenness)directionalsamplesinthismethod,areasonablelargenumberofpointsontheunithypersphere(direc-tions)areneeded.Thisentailsextracostforcomputingradii,whichbecomescriticalwhenthelimitstatefunctionishighlynonlinearorthereliabilityanalysisinvolvesalargenumberofvariables.Indirectionalsimulation,asetofNpointsPfP1YP2YFFFYPNguniformlydistributedontheunithyperspherede®nethedirections.Twoapproachestogeneratingthesepointsarecommon.The®rstistogenerateNvectorsoftheformu1Yu2YFFFYud,wheredisthedimensionofthespace,andui'sarerealizationsofavectorofindependentstandardnormalrandomvariables,eachofwhichhasbeennormalizedtounitlength.ThesecondapproachistogenerateNvectorsoftheformxx1Yx2YFFFYxdbytherejectionmethod,wherexi'sareindependentsamplesfromaone-dimensionaluniformdistribution.Avectorisretainedifjxj41X0;otherwise,anotherisgenerated.Finally,allvectorsarenormalized.Thedirectionalsimulationexamplespresentedsubsequentlyforcomparisonstoothermethodsstudiedwerepreparedusingtherejectionmethod.3.2.Otherdirectionalmethods
Inrecentyears,anumberofalternatemethodstogenerate``evenlydistributed''points(direc-tions)ontheunithyperspherehavebeendevelopedinother®elds.Someofthesemayprovetobeusefulinstructuralreliabilityapplications,andaredescribedbelow.
238J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
3.2.1.Sphericalt-design
Asphericalt-designisde®nedasfollows,usingthenotationofHardinandSloane[11],De®nition.
AsetofNpointsPfP1YP2YFFFYPNgontheunithypersphereÈÉ
dSdÀ1xx1Yx2YFFFYxdPRdXxÁx1formsasphericalt-designiftheidentity
N
1
fxd\"xfPi
Ndi1
IH
II
(where\"isaLebesguemeasureondnormalizedtohavetotalmeasure1)holdsforallpoly-nomialsfofdegree4t.
Inotherwords,theintegralofapolynomialfunctionoverthehyperspheredcanbeapproximatedbyitsaveragevalueatthepointsP.IfPformsasphericalt-design,Eq.(11)isexactforanypolynomialsofdegree4t.Delsarteetal.[12]haveshownthat,givendandt,thesmallestnumberofpoints,M4N,ofasphericalt-designisobtainedfrom,
tÀ1
dÀ1M22dÀ1
2M
t
dÀ12dÀ1
3
2
3
iftisodd
2
t
dÀ22dÀ1
3
iftiseven
IPIP
inwhichisthebinomialcoecient.Asphericalt-designwithMpointsissaidtobetight.Veryfewtightt-designsexist;however,Eq.(12)servesasabenchmarklaterinthispaperagainstwhichtocomparethenumberofpointsrequiredbyothermethods.Table1presentsthenumberofpoints,M,vsdandt.HardinandSloane[11]havedevelopedaseriesofsphericalt-designsuptot21inthree-dimensionalspaceusingapatternsearchalgorithm,butsofarhavebeenunabletoprovidet-designsinhyperspaceofdegree54.Someexamplesinthree-dimensionalspacewillbepresentedlaterinthispaper.Aswillbeseenintheseexamples,the240-pointspherical21-designleadstoaveryaccurateandecientestimateofPf.
3.2.2.Constructionmethods
Aconstructionmethodisoneinwhichallthe``evenly''distributedpoints(directions)aredescribedexplicitlybysomeformula.Thesemethods,ifavailable,arethemostecientwaytogetthepoints.Twomethodsareintroducedbelow.
.Spiralpointsmethod
Rakhmanovetal.[13]introducedthespiralpointproceduretoconstructalargenumber,
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249239
N,ofpointsonasphereS2.Thismethodcanonlybeusedin3-dimensionalproblems.ForsphericalcoordinatesY0,044%,04042%,kroshkYhkÀ1
H
2kÀ1
Y14k4N
NÀ1I
IQ
3X61gf
0kd0kÀ1pqemod2%Y24k4NÀ1Y010N0
N1Àh2
k
wheretheparameter3.6isbasedonHabichtandvanderWaerden's[14]bestpackingsuggestionandnumericalexperiments[13].
.Hyperspacedivisionmethod(HDM)
TheHDMprocedure[7]willbeexplainedfora3-dspaceforsimplicity.Itcanbeextendedtohyperspaces.Theunitspherex2y2z21canbeexpressedinpolarcoordinates,byasystemofequa-tionswithparametersand9;
V
`xos9osysin9osIRX
zsin
Table1
ThenumberofpointsMinatightt-designvsdimensiond[Eq.(12)]
Degreet
Dimensiond2345671011121314151617181920
t=2555105182294450660935128717292275294037404692581471258510,395
t=21221325722002600616,01638,687,516184,756369,512705,4321,293,2922,288,1323,922,5126,537,52010,623,47016,872,57026,246,22040,060,020
t=323321785872135,853128,877415,7011,225,7853,350,4798,580,49520,7,05547,805,615105,306,075222,981,435455,657,715300,329,863566,092,3601036,974,8725,915,6,470
240J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
where04942%,À%a244%a2.Todeterminethepoints,®rstÀ%a2Y%a2isequallydividedintomÀ1intervals,inwhichmisspeci®edinadvance.Eachoftheseintervalsis%amÀ1.Thisgivesaseriesoflatitudecircles,eachofwhichisde®nedbyafunction
x2y21Àz2os2iwhereiisgivenby
iÀ%a2%iÀ1amÀ1Yi1Y2YFFFYm
ITIS
Second,thecircleiisdividedequallyintom9iarcs,inwhichm9iisgivenbyanintegerfunctionINT(),i.e.
m9iINT2mÀ1osi
IU
Consequently,them9ipointsarealmostevenlydistributedonthelatitudecirclei.Theanglesofthesepointsare
9ij2%am9iÂjY
j1Y2YFFFYm9i
IV
andthetotalnumberofpointsare
m
mi1
m9iIW
Finally,therectangularCartesiancoordinatesofeachpointarecalculatedbyEq.(14).Gen-eratingthepointsisslowbecauseofthelargenumberofcosineoperations.Recentwork[8],has
enhancedtheeciencyoftheHDM.
3.2.3.PatternsearchforFeketePoints
Anumericalmethodcanbederivedtogeneratepointsevenlydistributedontheunitspherefromminimizingthepotentialenergy(PE)inasetofpointswithforcesofmutualrepulsion.SuchpointsaredenotedasFeketePointsin3-dspace[15];theyaregeneratedconceptuallyforhigherdimensionalspacesinthispaper.
De®nition.
ÃÃ
FeketePointsPfPÃ1YP2YFFFYPNgontheunitspherearepointsthatminimizeE1YP
PjÀPkÀ1
14j`k4N
PH
inwhichPixi1Yxi2Yxi3[15].Eq.(20)describesphysicallythepotentialenergyofNparticlesontheunitspherewithunitchargesthatrepeleachotheraccordingtoCoulomb'sÀslaw.Although
therearemoregeneralformsfortheenergy,e.g.EsYP14j`k4NPjÀPk,experiencehas
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249241
shownthattheiruseslowsdowntheconvergencetominimumPEormayleadtoconvergencetoalocalminimum.Therefore,thisapproachwillbebasedonCoulomb'slaw.ItisassumedtoremainvalidwhenEq.(20)isgeneralizedtodimensionshigherthan3.
WebeginbygeneratingNpointsontheunithyperspherebyanyappropriatemethod,asdescribedpreviously,assigningaunitchargetoeachpoint,andcalculatingtheinitialpotentialenergyofthesystem.Second,usingageneralizedpointrepulsionmethod(e.g.Leech'salgorithm,19961),inwhichallthepointsareconsideredtorepeleachotheraccordingtoa1ar2forcelaw(Coulomb'slaw),theforcesbetweenthepointsarecomputed.ThetangentcomponentFtiofthetotalforceFiactingoneachpointiisusedtodetermineapattern,whichde®nesthemovingdirectionandrelativemagnitudeofpointi;themaximumtangentforceFtmxamongthesetan-gentcomponentsoftheforcesactingonallpointsisrecorded.Third,setaninitialmaximummovingstepuAaN1adÀ1a2,bywhichthepointwiththelargesttangentforcewillmove,and
Fti
u.TestthePEtoseeifitissearchforalowerPEbylettingeachpointimoveastepof
jFtmxjreducedbythisstep.Ifnot,reduceubyhalf,andrepeatthisstepuntillalowerPEisobtained.Finally,whenthedierenceofPEnÀ1andPEnbetweentwosteps(nÀ1)andnfallsbelowsomespeci®edtolerance(say,10À8PEn),thentheprocedurestopsandyieldsanapproximatesetofFeketepoints.AlthoughgeneratingFeketepoints(44d420)istime-consuming,oncetheyaregeneratedandstoredinthecomputer,theycanbeusedrepeatedlyforreliabilityanalyses.Examplesinspaceswithdimensionsfrom3to7arepresentedinthesequel.
4.Numericalexamples4.1.Linearlimitstatefunctions
Thefollowinglinearlimitstatefunctionswiththreeto®vevariables:
dp
gdxÀxi3dY34d45
i1
PI
wherexx1Yx2YFFFYxd,isavectorofindependentGaussianrandomvariables,wereevaluatedpreviouslybyKatsukiandFrangopol[7],andareanalyzedinordertocomparetheproposedmethodswithpreviousresults.ItisclearthattheFORMwill®ndtheexactsolutionssincethelimitstatefunctionsarelinear.Indeed,theprobabilityoffailureisPf1X34997Â10À3foreachoftheselimitstatefunctions.
Table2(a)showsthatforthethree-variablelinearlimitstate,theuseoft-designpointsorFeketepointsyieldsthemostecient(withrespecttothecosttocomputeradiiandPfi)andaccuratesolutions.TheSpiralPointsMethodismoreaccuratethantheHDMforthesamenumberofpoints,fromwhichonecaninferthattheSpiralPointsMethoddistributespointsmore
Sourcecodeisavailableatftp://ftp.cs.unc.edu/pub/users/leech/points.tar.gz.Thecodedealswiththree-dimen-sionalspaceonly.
1242J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
Table2
Failureprobabilitiesforlinearlimitstates[Eq.(21)]computedbydierentmethods
Methodtogeneratethepoints
a.g3XforthreevariablesHDMSpiralPointsSphericalt-design
t=8t=10t=11t=13t=14t=16t=21
32012923201292366072961081442403660729610814424030021701,303,124
1002403004000604229,79432048060408009602080
1.342751.351541.345601.348861.3861.346031.352081.3431.347571.349401.349991.357951.346981.354761.350301.349051.350341.349511.349791.352691.351801.347531.351651.350351.350001.350001.267671.361021.347091.353591.348011.3501.350971.353681.34866
À0.5350.116À0.324À0.101+1.103À0.292+0.156À0.262À0.178À0.042+0.0015+0.591À0.221+0.355+0.024À0.068+0.027À0.034À0.013+0.201+0.136À0.181+0.124+0.028+0.002+0.002À6.096+0.819À0.213+0.268À0.145+0.050+0.074+0.275À0.097
NumberofpointsN
Computedprobabilityoffailure(Â10À3)
ErrorwithrespecttotheexactPf(%)
FeketePoints
b.g4XforfourvariablesHDMFeketePoints
c.g5Xfor®vevariablesHDMFeketePoints
evenlythandoesHDM.Thesameconclusionscanbedrawnfromtheresultspresentedforthe4-and5-variablesproblemsinTables2(b)and(c);notethattheSphericalt-designandSpiralPointsmethodsareavailableonlyinthree-dimensionalspace.For6-and7-variablesproblems,thee-ciencyandaccuracyoftheFeketePointsmethodisshowninTable3.Notethatthemaximum
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
Table3
FailureprobabilitiesforG6XandG7XcomputedbyFeketepointsmethodDimensionsofthespaced=6
NumberofpointsN012805120608012802560512020,000
Computedprobabilityoffailure(Â10À3)1.362591.353451.351911.350161.343921.336271.351371.34887
243
ErrorwithrespecttotheexactPf(%)+0.935+0.258+0.144+0.014À0.448À1.015+0.104À0.081
d=7
numberofpointsusedwhend6or7(6080or20,000)isonlyslightlylargerthantheminimumnumberrequiredbyEq.(12)foratight21-design(6006or16016inTable1).ThisnumberistheminimumnecessaryfortheapproximationofEq.(1)byEq.(8)tobeexactwhentheintegrandinEq.(1)isdescribedbyapolynomialofdegree21orless.4.2.Seriessystemoflinearlimitstatefunctions
Consideraseriessysteminwhichthefailureregionisboundedbythefollowingtwolimitstatefunctions:
p
PPgs1Àx1Àx2Àx333
gs2Àx33X0
PP
Thefailureregionisspeci®edbygs1`0gs2`0,asshowninFig.3.Thesecond-orderbounds[16]onthefailureprobabilityofthisseriessystemare2.53734Â10À34Pf,series42.618Â10À3[7].The``exact''solution2.561Â10À3wasobtainedbydirectionalsimulationusing10,000directions.Thesamplingerroronthisestimateisapproximately7.58Â10À5.Table4showsthatmostofthefailureprobabilitiescalculatedfromthedierentmethodsliewithinthebounds,excepttheSphericalt-designwhenN36or60.TheyallareconsistentwiththeresultfromtheMonteCarlosimulation.
4.3.Parallelsystemoflinearlimitstatefunctions
Eqs.(22)nowareassumedtoboundthefailureregiongs1`0gs2`0(seeFig.3)ofaparallelsystem.Thesecond-orderboundsare8.12977Â10À54Pf41.62595Â10À4[6];thefailureprobabilitycalculatedbyHohenbichler'sapproximation[17]formultinormalintegrals,reportedinKatsukiandFrangopol[7],is1.24211Â10À4.The``exact''solution,1.54156Â10À4,wasobtainedfromdirectionalsimulationusing10,000directions;thesamplingerroronthisestimate
244J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
Fig.3.Failuredomainsforseriesandparallelsystems.
Table4
Failureprobabilitiesforseriessystem[Eq.(22)]MethodtogeneratethepointsHDM
NumberofpointsN1292518220,8001292518220,800
t=8t=10t=11t=13t=14t=16t=21
3660729610814424036607296108144240300
Computedprobabilityoffailure(Â10À3)2.566132.566252.570872.585022.577922.576202.653062.619882.551162.570212.567432.565442.573982.571772.610922.570392.584222.554612.580102.575302.57215
SpiralPoints
Sphericalt-design
FeketePoints
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249245
is6.20Â10À6.UsingthesamepointsetsasintheseriessystemyieldstheresultsshowninTable5.ItshouldbenotedthatwhentheFeketepointsortheSphericalt-designmethodsareappliedtothisparallelsystemproblem(withaconvexfailureregion,seeFig.3)withthesamepointsetsasintheseriessystem(Table4),toofewpointsareobtainedtodescribethenonlinearlimitstateadequately.However,whenNisincreasedto1200(stillrelativelysmall,cf.Table5),theresultisquiteaccurate.TheSpiralPointsmethodappearstobehighlyaccurate,andwasfoundtogen-eratethepointsecientlyforbothseriesandparallelsystemsde®nedbypiecewiselinearfunc-tions.
4.4.NonlinearlimitstatefunctionThelimitstatefunctiongonve
À0X5x21
x22
x23
p
À2x1x2À2x2x3À2x3x1Àx1x2x3a33X0
PQ
hasafailuredomainthatisconcavewithrespecttotheorigin.The``exact''solution0.1979769wasobtainedbydirectionalsimulationusing10,000directions.Thesamplingerroronthis
Table5
Failureprobabilitiesforparallelsystem[Eq.(22)]MethodtogeneratethepointsHDM
NumberofpointsN1292518220,8001292518220,800
t=8t=10t=11t=13t=14t=16t=21
36607296108144240366072961081442403001200
Computedprobabilityoffailure(Â10À4)1.245521.244281.243081.477371.512061.551540.821691.266871.600221.454911.602331.660621.654861.553901.234571.4911.324221.475091.371521.559291.526211.55563
SpiralPoints
Sphericalt-design
FeketePoints
246J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
estimateis1.56Â10À3.Table6(a)showsthattheSphericalt-designandFeketepointsmethodsrequirefewerpointsthantheSpiralPointsmethodforcomparableaccuracy.Howeverallthreemethodsyieldsatisfactoryresultsfortheconcavefailuredomain.Ontheotherhand,ifthelimitstatefunctionhasafailureregionthatisconvex,
Table6
Failureprobabilities
Methodtogeneratethepoints
a.Concavelimitstatefunction[Eq.(23)]SpiralPoints
NumberofpointsN10824012925182
t=8t=10t=11t=13t=14t=16t=21
36607296108144240366072961081442403001082401292518236607296108144240366072961081442403001200
Computedprobabilityoffailure0.197300.197760.197980.198010.199390.197770.200550.198000.197270.198210.198010.198340.197030.198020.198010.197880.197930.198010.197921.971951.935281.938671.940072.2571.865941.813911.955931.931442.0471.929472.195941.942282.075871.2401.949161.907331.925101.954121.94081
Sphericalt-design
FeketePoints
b.Forconvexlimitstatefunction[Eq.(24)]SpiralPoints
Sphericalt-design
t=8t=10t=11t=13t=14t=16t=21
FeketePoints
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249247
p22
gonvex0X5x2xxÀ2xxÀ2xxÀ2xxÀxxxa33X0122331123123
PR
theSphericalt-designandFeketePointsmethodsneedmorepointstodescribethelimitstate,asinthepreviousparallelsystemexample.The``exact''solution1.93043Â10À2wasobtainedbydirectionalsimulationusing10,000directions.Thesamplingerroronthisestimateis8.04Â10À4.Table6(b)showsthattheFeketePointsmethod(with1200points)yieldsapproximatelythesameaccuracyastheSpiralpointsmethodwith5182points.Inbothcases,theresultsareclosetothe``exact''solution.4.5.Rigid-plasticframe
Ditlevsenetal.[2]examinedtherigid-plasticframestructure(illustratedinFig.4)bythedirectionalimportancesimulationmethod.Thisstructurecanbeanalyzedasaseriessystemofthreelinearlimitstatefunctions(collapsemechanisms),which,accordingtotheprincipleofvir-tualwork,arede®nedasfollows:
femXwyX
gominedX
gemX22X3X4ÀGbgswyX1X2X4X5ÀFa
PSPTPU
gominedX12X32X4X5ÀFaÀGb
TheyieldmomentsXjYj1YFFFY5,atthehingepointsinFig.4,areindependentandidenti-callydistributedlognormalrandomvariables,withmean\"1andcoecientofvariation0X25.ThelateralforceF,verticalforceGandthedistancesaandbareassumedconstant,withGb1X15andFa2X40.
Fig.4.Portalframemodeledasrigid±plasticsystem.
248J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249
Table7
Failureprobabilitiesfortherigid±plasticframestructure[Eqs.28)±(30)]MethodtogeneratethepointsFeketePoints
NumberofpointsN48060408009602080
Computedprobabilityoffailure(Â10À5)5.427185.282535.382035.563525.494565.45102
Letlogarithmicstandarddeviation$ln120X2462andlogarithmicmeanlln
lnXjÀl2
\"À1$À0X03031.WiththetransformationU,Ujareindependentstandardnor-j2$malvariables.Afterthetransformation,thelimitstatefunctionsbecomehighlynonlinearforms,
femXwyX
gominedX
geme$u2l2e$u3le$u4lÀ1X15gswye$u1le$u2le$u4le$u5lÀ2X40
PVPWQH
gominede$u1l2e$u3l2e$u4le$u5lÀ3X55
ÁÀ
Thefailuredomainisthende®nedbygem`0gswy`0gomined`0.The``exact''solution5.45191Â10À5wasobtainedbydirectionalsimulationusingÂ10À6.The®rst-orderboundsforthesystemfailureprobabilityare[3.12,5.68]Â10À5;thesecond-orderboundsreport-edlywerecoincidentat5.20Â10À5[16].Table7showsthattheFeketePointsmethodyieldsaveryaccuratesolutioncomparedtothe``exact''solutionwhenthenumberofpoints5960.5.Conclusion
Methodsthatapproximatethelimitstatesurfacebyaseriesofsphericalsegmentscanprovideaccurateestimatesoffailureprobabilitiesofcomponentsorsystems.Suchmethodscandealwiththeproblemsinvolvinghighnonlinearities,multipleextremaoftheprobabilitydensityalongthelimitstatefunction,andmultiplelimitstates.However,theiraccuracydependsontheabilitytogenerateecientlyasetofdirectionsalongwhichtheprobabilityincrementsinEq.(8)areesti-mated.Thispaperhaspresentedsomeprocedurestogeneratethesepoints``evenlydistributed''ontheunithypersphere.Oncethepointshavebeendetermined,theycanbeusedrepeatedlyinthenumericalintegrationsinreliabilityanalysisinamannersomewhatanalogoustoGaussQuadrature.
J.Nie,B.R.Ellingwood/StructuralSafety22(2000)233±249249
ThreefactorsmaketheFeketePointsmethodattractiveforthisparticularmethodofreliabilityanalysis.First,advancesincomputationhavemadethecomputationsnecessarytoidentifythepointspossible.Second,storageofpoints,onceidenti®ed,isinexpensive.Third,manypracticalstructuralsystemreliabilityproblemsrequireonly®veto20randomvariables,makingtheeorttoidentifythepointsfeasibleandpractical.
References
[1]BjeragerP.Oncomputationmethodsforstructuralreliabilityanalysis.In:FrangopolDM,editor.Newdirectionsinstructuralsystemreliability.Boulder(CO):UniversityofColorado,1988.p.52±67.
[2]DitlevsenO,MelchersRE,GluverH.Generalmulti-dimensionalprobabilityintegrationbydirectionalsimulation.ComputersAndStructures1990;36(2):355±68.
[3]MelchersRE.Structuralsystemreliabilityassessmentusingdirectionalsimulation.StructuralSafety1994;16:23±37.
[4]MoarefzadehMR,MelchersRE.Directionalimportancesamplingforill-proportionedspaces.StructuralSafety,inpress.
[5]KendallMG.Acourseinthegeometryofndimensions.NewYork:HafnerPublishingCompany,1961.
kI.Threedigitaccuratemultiplenormalprobabilities.NumerMath1980;35:369±80.[6]Dea
[7]KatsukiS,FrangopolDM.Hyperspacedivisionmethodforstructuralreliability.JEngineeringMechanics,ASCE1994;120(11):2405±27.
[8]KatsukiS,FrangopolDM.Advancedhyperspacedivisionmethodforstructuralreliability.In:Shiraishi,Shino-zuka,Wen,editors.Structuralsafetyandreliability,1998.p.631±8.
[9]AngAH-S,TangW.Probabilityconceptsinengineeringplanninganddesign,vol.II.NewYork:JohnWiley&Sons,1984.
[10]PressWH,TeukolskySA,VetterlingWT,FlanneryBP.NumericalrecipesinFortran90.2nded.,Cambridge
UniversityPress,1996.
[11]HardinRH,SloaneNJA.Mclaren'simprovedsnubcubeandothernewsphericaldesignsinthreedimensions.
DiscreteComputGeom1996;15:429±41.
[12]DelsarteP,GoethalsJM,SeidelJJ.Sphericalcodesanddesigns.GeomDedic1977;6:363±88.
[13]RakhmanovEA,SaEB,ZhouYM.Minimaldiscreteenergyonthesphere.MathResLett1994;1:7±62.[14]HabichtW,VanDerWaerdenBL.LagerungVonPunktenAufDerKugel.MathAnn1951;123:223±34.
[15]SaEB,KuijlaarsABJ.Distributingmanypointsonasphere.TheMathematicalIntelligencer1997;19(1):5±11.[16]DitlevsenO.Narrowreliabilityboundsforstructuralsystems.JStructMech1979;7(4):453±72.
[17]HohenbichlerM,RackwitzR.Reliabilityofparallelsystemsunderimposedstrain.JEngineeringMech,ASCE
1983;109(3):6±907.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务