《鸡兔同笼》教案
教学内容:数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页
教学目标:1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。
教学重点:明确鸡兔同笼问题数量关系。 教学难点:初步形成解决此类问题的一般性。 教学过程
一、 历史激趣,导入新课
导语:老师听说我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究“鸡兔同笼”问题(板书:鸡兔同笼)
1、分析题意:这道题目是什么意思?(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94条腿。问有多少只野鸡、多少只兔子?)
2、出示例题:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题) 你从中发现了哪些数学信息?还有隐藏的数学信息吗? 同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)
过渡:看来这么大的数据,同学们尝试猜测有一定的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。
二、化难为易,寻找规律(15分)
(1)如果 鸡兔共6只,共有22条腿,尝试猜测一下鸡、兔各 有
多少只?
(2)鸡兔共6只不变,腿数变为20条腿,鸡兔各几只?你是怎猜测出来的?
(3)鸡兔共6只不变,鸡兔的只数还有其它情况吗?腿数呢 (4) 请同学们借助表格1,整理一下我们的解题过程; 头数 鸡(只) 兔(只) 腿数 6 1 5 22 6 2 4 20 6 6 6
(4)(拿其中一名同学的表格在展示台展示)请同学们观察分析这些数据,看看有什么规律?(设想生答:1、满足鸡兔共六只的条件;2、鸡的只数在逐一增多;3、兔的只数在逐一减少;腿的条数也在减少;4、鸡增加一只兔减少一只,腿数减少两条)根据情况追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?
教师小结:由于鸡兔的只数是固定的,每减少一只兔就要增加一只鸡,腿的总数就减少两条;
过渡:刚才我们运用列表的方法解决了简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?板书:列表法
三、汇报交流 构建新知
( 1)、学生完成,教师巡视。
(选出:1逐一列表法2腿数少小幅度跳跃3腿数多大幅度跳跃4跳跃逐一相结合5取中列表)
(2)、学生汇报:
谁愿意来汇报你尝试猜测的过程
1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(腿数多或少说明什么?怎样进行调整的也
就是调整的方法)(生:因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)
还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。
你们认为这种方法有什么特点?(板书:逐一) 小结:逐一列表法虽然比较麻烦,但是不重复不遗漏; 2)、请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?)
问:你们觉得这种方法怎么样?(简便、快捷)
3)、请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从 ? 只一下调整到 ? 只的)
4)、请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)
小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)
5)、请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)
还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?
小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)
(3)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)
4)你最喜欢那种列表方法?理由呢? (5)、同学们还有其他的方法解决这道题吗?
直观画图法:大家明白了吗?你觉得这种解法怎么样? 小结:画图的方法非常直观便于观察、非常容易理解。 (6)、同学们还有具有独特个性的解法吗?可以用自己的名字命名
汇报。
过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。
四、方法应用,巩固新知(5分)
过渡语:鸡兔同笼问题由我国传到了日本叫做龟鹤问题,日本的龟鹤问题和我国的鸡兔同笼问题有联系吗?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,
基本题;请看题: (课件出示)
小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
学生解决。
五、分析应用,提高升华
(一)分析数量关系,提高认知水平
1、在活动安排中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:
学校准备开展一次象棋和跳棋的比赛,象棋和跳棋学校共有31副,恰好可让150个学生同时进行比赛,象棋2人一副、跳棋6人一副,象棋和跳棋各有多少副?
(生:31副相当于鸡兔的总头数;150人相当于鸡兔的总腿数;2人一副相当于鸡的两条腿;6人一副相当于兔的四条腿。
(二)实践应用拓展,解决实际问题 2、运输中的鸡兔同笼问题
地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?
尝试运用你喜欢的方法完成此题 学生汇报:
你采用的是那种列表方法? 为什么要选用这种列表方法?
谁有不同的列表方法? 六、总结全课,交流收获(3分)
生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗?
结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。
板书设计:
鸡兔同笼
列表法 思路
逐一 猜测
跳跃 验证
取中 调整
直观画图法 假设算术法 假设方程法