您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页八年级数学平行四边形的性质及判定

八年级数学平行四边形的性质及判定

来源:五一七教育网


平行四边形的性质及判定(复习课)

教学目的:

1、深入了解平行四边形的不稳定性;

2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离) 3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。 教学重点:平行四边形的性质和判定。 教学难点:性质、判定定理的运用。 教学程序:

一、复习创情导入

平行四边形的性质: 边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

角:对角相等(定理1);邻角互补。 平行四边形的判定:

边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1) 二、授新

1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法: 2、自学质疑:自学课本P79-82页,并提出疑难问题。

3、分组讨论:讨论自学中不能解决的问题及学生提出问题。 4、反馈归纳:根据预习和讨论的效果,进行点拨指导。 5、尝试练习:完成习题,解答疑难。 6、深化创新:平行四边形的性质: 边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

角:对角相等(定理1);邻角互补。 平行四边形的判定: 边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

7、推荐作业

1、熟记“归纳整理的内容”;

2、完成《练习卷》; 3、预习:(1)矩形的定义?

(2)矩形的性质定理1、2及其推论的内容是什么? (3)怎样证明?

(4)例1的解答过程中,运用哪些性质? 思考题

1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证;

2、如何证明性质定理3的逆命题? 3、有几种方法可以证明?

4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法? 跟踪练习

1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

3、下列条件中,能够判断一个四边形是平行四边形的是( )

(A)一组对角相等; (B)对角线相等; (C)两条邻边相等; (D)对角线互相平分。

创新练习

已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法) 达标练习

1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。 综合应用练习

1、下列条件中,能做出平行四边形的是( )

(A)两边分别是4和5,一对角线为10; (B)一边为4,两条对角线分别为2和5;

(C)一角为600,过此角的对角线为3,一边为4;

(D)两条对角线分别为3和5,他们所夹的锐角为450。

推荐作业

1、熟记“判定定理3”; 2、完成《练习卷》; 3、预习: (1)“平行四边形的判定定理4”的内容 是什么? (2)怎样证明?还有没有其它证明方法? (3)例4、例5还有哪些证明方法?

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务