您好,欢迎来到五一七教育网。
搜索
您的当前位置:首页高考数学试卷

高考数学试卷

来源:五一七教育网


数学试卷

参考公式:

如果事件A、B互斥,那么 P(A+B)=P(A)+P(B).

如果事件A、B相互,那么P(A·B)=P(A)·P(B).

如果事件A在一次试验中发生的概率是P,那么n次重复试验中恰好发生k次的概率 Pn(K)=kmPk(1-P)n-k

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只

有一项是符合题目要求的.

(1)已知{an}为等差数列,a2+a8=12,则a5等于 (A)4 (B)5

(C)6

(D)7

(2)设x是实数,则“x>0”是“|x|>0”的 (A)充分而不必要条件 (C)充要条件 (3)曲线C:

(B)必要而不充分条件 (D)既不充分也不必要条件

xcos1.(为参数)的普通方程为

ysin1

(B) (x+1)2+(y+1)2=1

(A)(x-1)2+(y+1)2=1 (C) (x+1)2+(y-1)2=1

(D) (x-1)2+(y-1)2=1

1(4)若点P分有向线段AB所成的比为-,则点B分有向线段PA所成的比是

3311(A)- (B)- (C) (D)3

222(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是

(A)简单随机抽样法 (C)随机数表法 (6)函数y10x21

(B)抽签法

(D)分层抽样法

(0x1)的反函数是

(A)y1lgx(x>(C) y1lgx(1) 10

(B)y1lgx(x>

1) 1011<x≤1 (D) y1lgx(<x≤1 1010(7)函数f(x)=

x的最大值为 x11

(A)

2 5 (B)

1 2 (C)

2 2 (D)1

x216y221的左焦点在抛物线y2=2px的准线上,则p的值为 (8)若双曲线3p(A)2

(B)3

(C)4

(D)42

(9)从编号为1,2,„,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为

(A) (10)若(x+

1 84 (B)

1 21 (C)

2 5 (D)

3 51n

)的展开式中前三项的系数成等差数列,则展开式中x4项的系数为 2x(A)6 (B)7 (C)8 (D)9

(11)如题(11)图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为

(A)模块①,②,⑤ (C)模块②,④,⑤ (12)函数f(x)=

(B)模块①,③,⑤ (D)模块③,④,⑤

sinx(0≤x≤2)的值域是

54cosx

11,] 4411(C)[-,]

22(A)[-11] 3322(D)[-,]

33(B)[-,二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡相应位置上.

2

5,则A(CUB)= (13)已知集合=1,2,3,4,5,A=2,3,4,B=4, . (14)若x0,则(2x+3)(2x-3)-4x(xx)= .

(15)已知圆C: xy2xay30(a为实数)上任意一点关于直线l:x-y+2=0 的对称点都在圆C上,则a= . (16)某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点

A、B、C、A1、B1、C1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有 种(用数字作答).

2214321412-1212

三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)

设△ABC的内角A,B,C的对边分别为a,b,c.已知bca3bc,求: (Ⅰ)A的大小;

(Ⅱ)2sinBcosCsin(BC)的值.

(18)(本小题满分13分,(Ⅰ)小问8分,(Ⅱ)小问5分.)

在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:

(Ⅰ)恰有两道题答对的概率; (Ⅱ)至少答对一道题的概率. (19)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.) 设函数f(x)xax9x1(a0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求: (Ⅰ)a的值;

(Ⅱ)函数f(x)的单调区间. (20)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)

如图(20)图, 和为平面,l,A,B,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角l的大小为 (Ⅰ)点B到平面的距离;

(Ⅱ)异面直线l与AB所成的角(用反三角函数表示).

322222,求: 33

(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足: PMPN2.

(Ⅰ)求点P的轨迹方程;

PM12PM2PN(Ⅱ)设d为点P到直线l: x的距离,若,求的值.

d2(22)(本小题满分12分,(Ⅰ)小问6分.(Ⅱ)小问6分) 设各项均为正数的数列{an}满足a12,ana (Ⅰ)若a232n1n2a(nN*).

1,求a3,a4,并猜想a2008的值(不需证明); 4an4对n≥2恒成立,求a2的值. (Ⅱ)若22a1a2

4

一、选择题:每小题5分,满分60分.

(1)C (2)A (3)C (4)A (5)D (6)D (7)B (8)C (9)B (10)B (11)A (12)C 二、填空题:每小题4分,满分16分.

(13) |2 , 3| (14) -23 (15) -2 (16) 12 三、解答题:满分74分.

(17)(本小题13分)

解:(Ⅰ)由余弦定理,abc2bccosA,

222b2c2a23bc3故cosA,2bc2bc2

所以A6. (Ⅱ) 2sinBcosCsin(BC)

2sinBcosC(sinBcosCcosBsinC)sinBcosCcosBsinC sin(BC)

sin(A)1sinA.2(18)(本小题13分)

解:视“选择每道题的答案”为一次试验,则这是4次重复试验,且每次试验中

“选择正确”这一事件发生的概率为

1. 4 由重复试验的概率计算公式得: (Ⅰ)恰有两道题答对的概率为 P4(2)C2()() 414234227. 1280 (Ⅱ)解法一:至少有一道题答对的概率为

34481175 1.

256256 1P4(0)1C4()()

014 解法二:至少有一道题答对的概率为

C4()()C4()()C4()()C4()()

113442214234231433441443405

10854121256256256256

175.256(19)(本小题12分)

解:(Ⅰ)因f(x)xax9x1 所以f(x)3x2ax9

222a2a2. 3(x)933aa2. 即当x时,f(x)取得最小值933 因斜率最小的切线与12xy6平行,即该切线的斜率为-12,

a212,即a29. 所以93 解得a3,由题设a0,所以a3. (Ⅱ)由(Ⅰ)知a3,因此f(x)x3x9x1,

32f(x)3x26x93(x3(x1)令f(x)0,解得:x11,x23.当x(,1)时,f(x)0,故f(x)在(,1)上为增函数; 当x(1,3)时,f(x)0,故f(x)在(1, 3)上为减函数;当x(3,+)时,f(x)0,故f(x)在(3,)上为增函数.由此可见,函数f(x)的单调递增区间为(,1)和(3,);单调递减区间为(1,3).

(20)(本小题12分)

解:(1)如答(20)图,过点B′C∥A′A且使B′C=A′A.过点B作BD⊥CB′,交CB′的延长线于D.

由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BD⊥l又因BD⊥CB′,从而BD⊥平面α,BD之长即为点B到平面α的距离.

因B′C⊥l且BB′⊥l,故∠BB′C为二面角α-l-β的平面角.由题意,∠BB′C=

2.因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sinBB′D 336

=3. (Ⅱ)连接AC、BC.因B′C∥A′A,B′C=A′A,AA′⊥l,知A′ACB′为矩形,故AC∥l.所以∠BAC或其补角为异面直线l与AB所成的角. 在△BB′C中,B′B=2,B′C=3,∠BB′C=

222,则由余弦定理, 3BC=B'BB'CB'CcosBB'C19. 因BD平面

,且DCCA,由三策划线定理知ACBC.

BC19,sinBAC=. AB52故在△ABC中,∠BCA=

因此,异面直线l与AB所成的角为arcsin

(21)(本小题12分) 解:(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线. 因此半焦距c=2,实半轴a=1,从而虚半轴b=3,

y2所以双曲线的方程为x=1.

32-

(II)解法一:

由(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线. 因此半焦距e=2,实半轴a=1,从而虚半轴b=3.

y2R所以双曲线的方程为x-=1. 32

(II)解法一:

由(I)及答(21)图,易知|PN|1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P为双曲线右支上的点,所以|PM|=|PN|+2. ② 将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=117117,舍去,所以 44|PN|=117. 4因为双曲线的离心率e=所以d=

c1|PN|=2,直线l:x=是双曲线的右准线,故=e=2, a2d1|PN|,因此 2|PM|2|PM|4|PN|24|PN|117 d|PN||PN|解法:

7

设P(x,y),因|PN|1知 |PM|=2|PN|22|PN|>|PN|,

故P在双曲线右支上,所以x1. 由双曲线方程有y2=3x2-3. 因此

|PN|(x2)2y2(x2)23x234x24x1.

从而由|PM|=2|PN|2得

2x+1=2(4x2-4x+1),即8x2-10x+1=0. 所以x=

5175178(舍去x=8). 有|PM|=2x+1=

9174 d=x-

12=1178.

|PM|d91748117117. (22)(本12分) 解:(I)因a1=2,a2=2-2,故

由此有a1=2(-2)0, a2=2(-2)4, a3=2(-2)2, a4=2(-2)3, 从而猜想an的通项为

a)n1n2(2(nN*),

所以a2xn=2(2)2xn.

(Ⅱ)令xn=log2an.则a2=2x2,故只需求x2的值。

设Sn表示x2的前n项和,则a1a2„an=2sn,由22≤a1a2„an<4得

23≤Sn=x1+x2+„+xn<2(n≥2). 因上式对n=2成立,可得23≤xa11+x2,又由1=2,得x1=1,故x2≥2.

2由于a1=2,anan31an2(n∈N*),得x3n2xn1xn2(n∈N*),即 x3n22xn1(xn22x11n1)2xn12(xn12xn), 因此数列{x1n+1+2xn}是首项为x2+2,公比为2的等比数列,故

8

xn+1+2xn=(x2+2)

12n1 (n∈N*).

将上式对n求和得 Sn+1-x1+2Sn=(x2+2)(1+

111+„+n1)=(x2+2)(2-n1)(n≥2). 222)<5(n≥2).

因Sn<2,Sn+1<2(n≥2)且x1=1,故

(x2+2)(2-

12n1因此2x2-1<下证x2≤2n1<

x22(n≥2). n1211,若淆,假设x2>,则由上式知,不等式 22x22

2x21对n≥2恒成立,但这是不可能的,因此x2≤又x2≥

1. 211z,故z2=,所以a2=22=2. 229

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 517ttc.cn 版权所有 赣ICP备2024042791号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务